Supporting Information

New MWCNTs porous microspheres with efficient 3D conductive network for high performance lithium-sulfur batteries

Xiaomin Ye,*‡ a,b Jie Ma,‡ b Yong-sheng Hu,*b Huiying Wei,*a and Fangfu Ye* b

a. Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. E-mail: weihuiying@sdu.edu.cn; Fax: +86-531-88564464; Tel: +86-531-88365431

b. Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. E-mail: yshu@aphy.iphy.ac.cn
Fig. S1 SEM images of single MWCNTs porous microsphere before (a) and after (b) heat treatment at 600 °C under Ar atmosphere

Fig. S2 TGA result of the C/S microspheres with 77 wt% sulfur content

Fig. S3 SEM image of C/S microspheres with 77 wt% sulfur content.
Fig. S4 XRD spectra of C/S composite without heat treatment.

Fig. S5 SEM images of the MS-C/S electrode (a) before and (b) after 20 charge and discharge cycles at a constant current density of 0.1 C.