Unlocking the effects of ancillary electron-donors on light absorption and charge recombination in phenanthrocarbazole dye-sensitized solar cells

Heng Wu,‡ Lin Yang,‡ Yang Li,§ Min Zhang,** Jing Zhang,§ Yanchun Guo** and Peng Wang*§

‡ College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China. E-mail: gyc@zzu.edu.cn

§ State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. E-mail: min.zhang@ciac.ac.cn; peng.wang@ciac.ac.cn

** University of Chinese Academy of Sciences, Beijing, 100049, China

† These authors contributed equally to this work.
Fig. S1 Wavelength-dependent absorption change upon applying a positive potential bias to a 1.2-μm-thick, dye-grafted titania film immersed in EMITFSI.
Fig. S2 The 1H NMR (400 MHz) of 3 in CDCl$_3$.
Fig. S3 The 13C NMR (100 MHz) of 3 in CDCl$_3$.
Fig. S4 The 1H NMR (400 MHz) of 4 in CDCl$_3$.
Fig. S5 The 13C NMR (100 MHz) of 4 in CDCl$_3$.
Fig. S6 The 1H NMR (400 MHz) of 5 in CDCl$_3$.
Fig. S7 The 13C NMR (100 MHz) of 5 in CDCl$_3$.
Fig. S8 The 1H NMR (400 MHz) of 7 in CDCl$_3$.
Fig. S9 The 13C NMR (100 MHz) of 7 in CDCl$_3$.
Fig. S10 The 1H NMR (400 MHz) of 8 in CDCl$_3$.
Fig. S11 The 13C NMR (100 MHz) of 8 in CDCl$_3$.
Fig. S12 The 1H NMR (400 MHz) of 2 in CDCl$_3$.
Fig. S13 The 13C NMR (100 MHz) of 9 in CDCl$_3$.
Fig. S14 The 1H NMR (400 MHz) of HW-1 in THF.
Fig. S15 The 13C NMR (100 MHz) of HW-1 in THF.
Fig. S16 The 1H NMR (400 MHz) of HW-2 in THF.
Fig. S17 The 13C NMR (100 MHz) of HW-2 in THF.
Fig. S18 The 1H NMR (400 MHz) of HW-3 in THF.
Fig. S19 The 13C NMR (100 MHz) of HW-3 in THF.