RSCPublishing

Electronic Supplementary Information (ESI)

Design and Control of Lewis Acid Sites in Sn-substituted Microporous Architectures

Khaled M. H. Mohammed,^{*a,b,c†*} Arunabhiram Chutia,^{*a,b*} June Callison,^{*a,b*} Peter P. Wells,^{*a,b*} Emma K. Gibson,^{*a,b*} Andrew M. Beale,^{*a,b*} C. Richard A. Catlow^{*a,b*} and Robert Raja^{d†}

^{*a*} UK Catalysis Hub, Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell Oxon, OX11 0FA (UK).

^b Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

^c Chemistry Department, Faculty of Science, Sohag University, Sohag, P.O.B 82524, Egypt.

^d School of Chemistry, University of Southampton, Southampton, SO17 1BJ (UK).

Contents

1.	1. Supporting Characterisations		2
	1.1. TG-DTG		2
	1.2. MAS NMR experimental cond	ditions	2
	 ¹¹⁹Sn MAS NMR 		2
	• ³¹ P and ²⁷ Al MAS NMR		2
	1.3. DR UV/Vis spectroscopy		2
	1.4. BET surface area (S _{BET}):		3
2.	2. Supporting results		4
	2.1. Template removal by calcinate	ion	4
	2.2. TGA		4
	2.3. Index of XRD patterns		6
	2.4. BET surface area (S _{BET})		9
3.	3. References		9

1. Supporting Characterisations

1.1. TG-DTG

TGA-DTG analyses were collected using TA instruments, Q50 TGA model. Typically, ~10 mg of the as-synthesised sample was placed into a platinum pan and loaded to the instrument. Then, the weight% was recorded upon heating to 800 °C at 5 °C/min and in flow of 100 ml/min of compressed air (60% balanced in N₂). In order to identify the species evolved by calcination, ~ 20 mg of each sample was charged into Catlab Microreactor module (Hiden analytical) with a MS detector. The sample was placed into a quartz tube on a bed of glass wall and heated up to 800 °C (5 °C/min) in flow of 10% O₂/He. As a result, MS signals of masses 12, 17, 18 and 44 were recorded.

1.2. MAS NMR experimental conditions.

¹¹⁹Sn MAS NMR

- Pulse sequence: Hahn echo with rotor sequence of 90- τ -180
- Spectrometer: Bruker Avance III HD
- Magnetic frequency: 400.177 MHz
- Relaxation delay: 2.0 s.
 - ³¹P and ²⁷Al MAS NMR
- Pulse sequence: hpdec for ³¹P and onepul for ²⁷Al
- Spectrometer: Bruker Avance III HD for ³¹P and Varian VNMRS for ²⁷Al.
- Magnetic frequency: 161.99 MHz for ³¹P and 104.199 MHz for ²⁷Al.
- Pulse duration: 4.40 μ s for ³¹P and 1.0 μ s for ²⁷Al.
- Recycle delay: 10 s for ³¹P and 0.2 s for ²⁷Al.

1.3. DR UV/Vis spectroscopy

UV/Vis DRS were collected using UV-Vis 2600 spectrometer with an integrated sphere. Typically, a portion of the calcined sample (*ex situ* calcined and stored in a desiccator under vacuum) was placed into the sample holder. The sample's surface was flattened prior to the measurement and then the %R was recorded as a function of wavelength in the range of 200–800 nm. The %R was then converted to the absorbance using the Kubelka-Munk function. Baseline was corrected by using blank BaSO₄ discs before the measurement. For the reduced samples, a portion of the calcined sample was placed and heated in tube furnace in flow of pure H₂ at 400 °C for 2 h, then cooled down to RT in the same atmosphere. The tube containing the sample was sealed well and transferred into a glove box for the preparation purpose (placed in a homemade PTFE sample holder, covered by a quartz window) prior to each measurement. To ensure more protection of the sample and hence reduce the probability of sample's re-oxidation, vacuum grease was used at the edges of the sample holder between the holder and the quartz window, then place into a zipped bag for transfer to the instrument.

1.4. BET surface area (S_{BET}):

 S_{BET} was calculated using the BET equation using N₂ Physisorption analysis at 77 K on Quantachrome, Quadrasorb evo model. Prior to the measurement, all samples were degassed for 12 h at 150 °C to 0.1 Pa.

RSCPublishing

2. Supporting results

2.1. Template removal by calcination

Calcination at 550 °C was given first trail, which is commonly used for removing the SDA (N,Ndicyclohexylmethyl amine) from AlPO-5 based materials. However, this temperature was not enough to completely remove the SDA as can be seen from **Fig. S1 A** below (gray/oily solid powder obtained). So calcination at 700 °C was used to remove the template (**Fig. S1 B**).

Fig. S 1 The color of 3%Sn AlPO-5 sample after being calcined at A) 550 °C and B) 700 °C.

2.2. TGA

The removal of the organic template from the as-synthesised materials during their calcination in flow of compressed air as well as their thermal stabilities were studied using TG-DTG analysis. In addition, the evolved species were further traced using a MS detector by monitoring mass 12, 17, 18 and 44 while heating in flow of 10% O_2 /He in a distinct experiment. The results are presented in **Fig. S2** and **S3** below for 3%Sn and 6%CoSn AlPO-5 samples, respectively. The weight loss (%) in the temperature window of RT-150 °C is due to the desorption of physisorbed water. The removal of chemisorbed water and/or removal of organic SDA appear at 250–450 °C, while complete combustion of organic SDA residue appears between 500-700 °C. The results showed that the samples are thermally stable up to 800 °C. Based on this, the template was removed by the calcination at 700 °C (5 °C/min) in flow of compressed air.

Fig. S 2 TG-DTG (top) and MS signals (bottom) in flow of air while heating up (800 °C, 5 °C/min) for the as-synthesised 3% SnAlPO-5 sample, as indicated.

Fig. S 3 TG-DTG (top) and MS signals (bottom) in flow of air while heating up (800 °C, 5 °C/min) for the as-synthesised 6% CoSnAlPO-5 sample, as indicated.

=

2.3. Index of XRD patterns										
CELI	CELREF Version 3. 28/07/2015 10:57:55									
<mark>AlPO</mark>	<mark>)-5-70</mark>	0C samp	ole							
Initia	Initial values : (Refinement keys on 2nd line)									
Zero	0	Lambo	da	а	b	c	alpha	beta	gamma	Vol.
0.0	0	1.5406	013.70741	13.7074	8.3706	90.000	90.000	120.000	1362.1	
0	0	1	0	1	0	0	0			
Final	value	s : (S	tandard er	rors on	2nd line)				
Zero	С	Lambo	da	а	b	c	alpha	beta	gamma	Vol.
0.0	0	1.5406	013.70851	3.7085	8.3707	90.000	90.000	120.000	1362.3	
0.0	0	0.0000	0 0.0143	0.0000	0.0012	0.000	0.000	0.000		
Н	Κ	L	2T(Obs)	2T-Zer	0	2Th(C	al)	Dif	
0	1	0	7.4600	7.4600	7.4404	0.0196				
1	1	0	12.9200		12.9200)	12.9054	1	0.0146	
0	2	0	14.9400		14.9400)	14.9124	4	0.0276	
1	2	0	19.7800		19.7800)	19.7690	5	0.0104	
0	0	2	21.2000		21.2000)	21.2112	2	-0.0112	
1	2	1	22.4800		22.4800)	22.4634	1	0.0166	
1	1	2	24.9400		24.9400)	24.906)	0.0331	
2	2	0	25.9800		25.9800)	25.9782	2	0.0018	
1	2	2	29.1400		29.1400)	29.153)	-0.0139	
0	4	0	30.0600		30.0600)	30.085	1	-0.0251	
2	2	2	33.7800		33.7800)	33.7763	3	0.0037	
1	4	0	34.5800		34.5800)	34.5954	1	-0.0154	
0	4	2	37.0800		37.0800)	37.104′	7	-0.0247	
1	2	3	37.9600		37.9600)	37.9423	3	0.0177	

CELREF Version 3. 15/04/2015 15:47:25

3%Sn-700C sample

nitial values : (Refinement keys on 2nd line)								
Zero	Lambda	а	b	c	alpha	beta	gamma	Vol.
0.00	1.5406013	770313.7703	8.3776	90.000	90.000	120.000	1375.7	
0 0	1	0 1	0	0	0			
Final values	: (Stand	ard errors on	2nd line)				
Zero	Lambda	а	b	c	alpha	beta	gamma	Vol.
0.00	1.5406013	770313.7703	8.3776	90.000	90.000	120.000	1375.7	
0.00	0.00000 0.0	0258 0.0000	0.0027	0.000	0.000	0.000		

RSCPublishing

	Н	Κ	L	2T(Obs)	2T-Zero	2Th(Cal)	Dif
	0	1	0	7.3600 7.	.3600 7.4070 -0.047	70	
	1	1	0	12.8000	12.8000	12.8472	-0.0472
	0	2	0	14.8200	14.8200	14.8451	-0.0251
	1	2	0	19.6600	19.6600	19.6800	-0.0200
	0	0	2	21.1400	21.1400	21.1935	-0.0535
	0	3	0	22.3200	22.3200	22.3468	-0.0268
	2	2	0	25.8600	25.8600	25.8596	0.0004
	1	2	2	29.0400	29.0400	29.0787	-0.0387
	0	4	0	29.9800	29.9800	29.9470	0.0330
	2	2	2	33.7200	33.7200	33.6715	0.0485
	2	3	1	34.4600	34.4600	34.4576	0.0024
	0	4	2	37.0400	37.0400	36.9794	0.0606
	1	2	3	37.8800	37.8800	37.8697	0.0103
=							

CELREF Version 3. 15/04/2015 15:32:50

<mark>6%Ca</mark>	6%CoSn-700C sample									
Initia	Initial values : (Refinement keys on 2nd line)									
Zerc)	Lambda	ì	a	b	c	alpha	beta	gamma	Vol.
0.00)	1.54060	13.7623	13.7623	8.3631	90.000	90.000	120.000	1371.8	
0	0	1	0	1	0	0	0			
Final values : (Standard errors on 2nd line)										
Zerc)	Lambda	ı	а	b	c	alpha	beta	gamma	Vol.
0.00)	1.54060	13.7626	13.7626	8.3631	90.000	90.000	120.000	1371.8	
0.00)	0.00000	0.0311	0.0000	0.0029	0.000	0.000	0.000		
Н	Κ	L	2T(Obs	5)	2T-Zer	0	2Th(Ca	al)	Dif	
0	1	0	7.3800	7.3800	7.4111	-0.0311				
1	1	0	12.8400)	12.8400)	12.8545	5	-0.0145	
0	2	0	14.8400)	14.8400)	14.8535	5	-0.0135	
1	2	0	19.6600)	19.6600)	19.6911	1	-0.0311	
0	0	2	21.1400)	21.1400)	21.2305	5	-0.0905	
0	3	0	22.3400)	22.3400)	22.3595	5	-0.0195	
1	1	2	25.0000)	25.0000)	24.8965	5	0.1035	
2	2	0	25.8600)	25.8600)	25.8743	3	-0.0143	
1	2	2	29.0800)	29.0800)	29.1139)	-0.0339	
0	4	0	29.9800)	29.9800)	29.9642	2	0.0158	
2	2	2	33.7200)	33.7200)	33.7072	2	0.0128	
2	3	1	34.4800)	34.4800)	34.4815	5	-0.0015	
0	4	2	37.0800		37.0800)	37.0158	3	0.0642	
1	2	3	37.9000		37.9000)	37.9248	3	-0.0248	

Table S1: Cell	parameters extracted	from XRD	analysis.
----------------	----------------------	----------	-----------

Sampla	Cell parameters (XRD)				
Sample	a (Å)	c (Å)			
AlPO-5-700C	13.71	8.37			
3%Sn-700C	13.77	8.38			
6%CoSn-700C	13.76	8.36			

2.4. BET surface area (S_{BET})

Sample	S_{BET} (m ² .g ⁻¹)
AlPO-5-700C	345 (±5)
3%Sn-700C	399 (±5)
6%CoSn-700C	168 (±5)

Table S2: S_{BET} (m².g⁻¹) values extracted from N₂ Physisorption analysis.

3. References

- 1 M. E. Potter, a. J. Paterson and R. Raja, *ACS Catal.*, 2012, **2**, 2446–2451.
- J. Paterson, M. Potter, E. Gianotti and R. Raja, Chem. Commun. (Camb)., 2011, 47, 517–519.
- 3 A. M. Beale, G. Sankar, C. R. A. Catlow, P. A. Anderson and T. L. Green, *Phys. Chem. Chem. Phys.*, 2005, 7, 1856–1860.
- 4 B. Ravel, B. Ravel, M. Newville and M. Newville, J. Synchrotron Radiat., 2005, 12, 537–541.
- 5 M. E. Potter, D. Sun, E. Gianotti, M. Manzoli and R. Raja, *Phys. Chem. Chem. Phys.*, 2013, **15**, 13288–13295.
- 6 B. Delley, J. Chem. Phys., 1990, **92**, 508.
- 7 B. Delley, J. Chem. Phys., 2000, 113, 7756.
- 8 J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **45**, 13244–13249.