Supplementary Information

For

Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP for tumor acidic microenvironment imaging†

Xiaodong Liu, a Qian Chen b, Guangbao Yang b, Lifen Zhang,a Zhuang Liu,*b Zhenping Cheng,*a and Xiulin Zhu a

a Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
b Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
Fig. S1 Structures of benzo[a]phenoxazine-dotted Fe₃O₄@SiO₂@PPEGMA₄₇₅-co-PAA@Oxazine MNPs.

Fig. S2 XPS spectra of MNPs of (a) Fe₃O₄@SiO₂-NH₂, (b) Fe₃O₄@SiO₂-Br and (c) Fe₃O₄@SiO₂@PPEGMA₄₇₅-co-PtBA.
Fig. S3 XPS C 1s core-level spectra of Fe₃O₄@SiO₂@PPEGMA₄₇₅-co-PtBA.

Fig. S4 GPC curve and data of PPEGMA₄₇₅-co-PtBA grafted on the surface of Fe₃O₄@SiO₂@PPEGMA₄₇₅-co-PtBA. The sample was obtained by etching with hydrofluoric acid from corresponding MNPs.
Fig. S5 Absorption spectra of 3a (1, 2, 4, 6, 8, 10, 12, 14, 16 and 18 μg/mL) in Na2HPO4-citric acid buffer solution (pH 3.0); inset shows the linear fit of absorbance at 665 nm.

Fig. S6 Absorption spectra of PPEGMA_{475-c0-PAA}@Oxazine-2 (0.05, 0.09, 0.13, 0.17, 0.21, 0.25, 0.29, 0.33, 0.37 and 0.40 mg/mL) in Na2HPO4-citric acid buffer solution (pH 3.0); inset shows the linear fit of absorbance at 665 nm.
Fig. S7 Particle sizes of the as-prepared MNPs at different modification stages in water by DLS.

Fig. S8 Particle sizes of the as-prepared MNPs at different modification stages in water by DLS.
Fig. S9 Absorption properties of compound 3a (10 μM) toward different pH values in Na₂HPO₄-citric acid buffer solution with 10% DMSO as a co-solvent.

Fig. S10 Absorption properties of compound 3a (10 μM) toward different pH values in Na₂HPO₄-citric acid buffer solution with 10% DMSO as a co-solvent (λex = 600 nm).
Fig. S11 Fluorescence intensity changes of compound 3a (10 μM) at 700 nm toward different pH values in Na₂HPO₄-citric acid buffer solution with 10% DMSO as a co-solvent.

Fig. S12 Fluorescence intensity changes at 688 nm of Fe₃O₄@SiO₂@PPEGMA₄75-co-PAA@Oxazine-2 toward different pH values in Na₂HPO₄-citric acid buffer solution.
Fig. S13 Absorption properties of Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA@Oxazine-2 toward different pH values in Na$_2$HPO$_4$-citric acid buffer solution. (Iron concentrations is 0.025 mg/mL, $\lambda_{ex} = 600$ nm).

Fig. S14 Absorption spectra of grafted polymer PPEGMA$_{475}$-co-PAA@Oxazine-2 (0.25 mg/mL) toward different pH values in Na$_2$HPO$_4$-citric acid buffer solution. The polymer was collected from the hybrid Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA@Oxazine-2 MNPs after treated with HF to remove the Fe$_3$O$_4$@SiO$_2$ core.
Fig. S15 Absorption properties of Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA@Oxazine-1 toward different pH values in Na$_2$HPO$_4$-citric acid buffer solution. (Iron concentrations is 0.025 mg/mL, $\lambda_{ex} = 600$ nm).

Fig. S16 Emission properties of Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA@Oxazine-1 toward different pH values in Na$_2$HPO$_4$-citric acid buffer solution. (Iron concentrations is 0.025 mg/mL, $\lambda_{ex} = 600$ nm).
Fig. S17 Absorption properties of Fe₃O₄@SiO₂@PPEGMA₄₇₅-co-PAA@Oxazine-3 toward different pH values in Na₂HPO₄-citric acid buffer solution. (Iron concentrations is 0.025 mg/mL, λex = 600 nm).

Fig. S18 Emission properties of Fe₃O₄@SiO₂@PPEGMA₄₇₅-co-PAA@Oxazine-3 toward different pH values in Na₂HPO₄-citric acid buffer solution. (Iron concentrations is 0.012 mg/mL, λex = 600 nm).
Fig. S19 Fluorescence intensity changes at 680 nm of Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA@Oxazine-3 toward different pH values in Na$_2$HPO$_4$-citric acid buffer solution.

Fig. S20 Confocal fluorescent images of fixed 293T cells incubated with Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA@Oxazine-2 and Hoechst 33342 at pH 5.0 (a-c), pH 6.0 (d-f), and pH 7.4 (g-i), respectively.
Fig. S21 Relative cell viability data of 4T1 cells incubated with a series of iron concentrations of Fe₃O₄@SiO₂@PPEGMA₄₇₅-co-PAA@Oxazine-2 measured by the MTT cell viability assay.

Fig. S22 Relative cell viability data of 293T cells incubated with a series of iron concentrations of Fe₃O₄@SiO₂@PPEGMA₄₇₅-co-PAA@Oxazine-2 measured by the MTT cell viability assay.
Fig. S23 1H NMR (300 MHz) of 2a in DMSO-d_6.

Fig. S24 1H NMR (300 MHz) of 2b in DMSO-d_6.

13
Fig. S25 1H NMR spectra (300 MHz) of 3a in DMSO-d_6.

Fig. S26 1H NMR spectra (300 MHz) of 3b in DMSO-d_6.
Fig. S27 1H NMR (300 MHz) of 3c in DMSO-d_6.

Fig. S28 1H NMR spectra (300 MHz) of 2a+H^+ in DMSO-d_6.
Fig. S29 1H NMR spectra (300 MHz) of 3a+H$^+$ in DMSO-d_6.

Fig. S30 1H NMR spectra (300 MHz) of 3c+H$^+$ in DMSO-d_6.

16
Fig. S31 1H NMR spectrum (300 MHz) of grafted PPEGMA$_{475}$-co-PAA in DMSO-d_6. The polymer was collected from Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA after treated with HF to remove the Fe$_3$O$_4$@SiO$_2$ core.

Fig. S32 1H NMR spectrum (300 MHz) of grafted PPEGMA$_{475}$-co-PAA in DMSO-d_6. The polymer was collected from Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA after treated with HF to remove the Fe$_3$O$_4$@SiO$_2$ core.
Fig. S33 1H NMR spectrum of grafted polymer in DMSO-d_6. The polymer was collected from Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA@Oxazine-2 after treated with HF to remove the Fe$_3$O$_4$@SiO$_2$ core.

Fig. S34 13C NMR (75 MHz) of 2a in CDCl$_3$.

Fig. S33 1H NMR spectrum of grafted polymer in DMSO-d_6. The polymer was collected from Fe$_3$O$_4$@SiO$_2$@PPEGMA$_{475}$-co-PAA@Oxazine-2 after treated with HF to remove the Fe$_3$O$_4$@SiO$_2$ core.

Fig. S34 13C NMR (75 MHz) of 2a in CDCl$_3$.

Fig. S35 13C NMR (75 MHz) of 2b in DMSO-d_6.

Fig. S36 13C NMR (75 MHz) of 3a in DMSO-d_6.
Fig. S37 ¹³C NMR (75 MHz) of 3b in DMSO-δ₆.

Fig. S38 ¹³C NMR (75 MHz) of 3c in DMSO-δ₆.
Fig. S39 13C NMR (75 MHz) of 2a+H^+ in DMSO-d_6.

Fig. S40 13C NMR (75 MHz) of 3a+H^+ in DMSO-d_6.
Fig. S41 13C NMR (75 MHz) of 3c+H$^+$ in DMSO-d_6.

Fig. S42 HRMS of 2a.
Fig. S43 HRMS of 2b.

m/z calcd for C_{25}H_{23}N_{4}O_2^+ 411.1821

Fig. S44 HRMS of 3a.

m/z calcd for C_{27}H_{27}N_{4}O^+ 423.2185
Fig. S45 HRMS of 3b.

Fig. S46 HRMS of 3c.
Fig. S47 FRTC of 2a.

Fig. S48 FRTC of 2b.
Fig. S49 FRTC of 3a.

Fig. S50 FRTC of 3b.
Fig. S51 FRTC of 3e.