Supporting Information

Monodisperse Photoluminescent and Highly Biocompatible Bioactive Glass Nanoparticles for Controlled Drugs Delivery and Cell Imaging

Yumeng Xuea, Yuzhang Dua, Jin Yana, Zhengqing Liua, Peter X Maa,c,e,f, Xiaofeng Chen d, Bo Lei a,b,d*

a Center for Biomedical Engineering and Applied Chemistry, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China

b State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China

c Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, USA

d National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China

e Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, USA

f Department of Materials Science and Engineering, University of Michigan, Ann Arbor, USA

*Corresponding author:

B Lei, rayboo@xjtu.edu.cn or leiboaray@gmail.com,

http://gr.xjtu.edu.cn/web/rayboo, Tel. +86-29-83395361
Figure S1. Good dispersibility in water and ethanol of as-prepared BGN-Eu nanoparticles. (A) BGN-Eu0, (B) BGN-Eu1, (C) BGN-Eu2, (D) BGN-Eu3.
Figure S2. EDS analysis of as-prepared BGN-Eu3 nanoparticles. (A) Original EDS spectrum and magnified EDS spectrum (B).
Figure S3. FTIR analysis of BGN-Eu before (A-D) and after (E-H) loading drug. (A, E) BGN-Eu0, (B, F) BGN-Eu1, (C, G) BGN-Eu2, (D, H) BGN-Eu3.

Figure S4. MC3T3 cells proliferation and metabolic activity after incubation with various BGN-Eu at 250 µg mL⁻¹.
Figure S5. Fluorescent images of cells after culture for 5 days at 40 µg mL⁻¹ (A) 250 µg mL⁻¹ (B) (Scale bar: 300 µm).