Electronic Supplementary Information

Fast synthesis of fluorescent SiO$_2$@CdTe nanoparticles with reusability in detection of H$_2$O$_2$

Jiejie Gea,b, Xiangling Renb,*, Xiaozhong Qiua,*, Haitang Shib, Xianwei Mengb,*, and Fangqiong Tangb

a Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China.

b Laboratory of Controllable Preparation and Application of Nanomaterials, Center for Micro/nanomaterials and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

*Corresponding author. Tel: 86-10-82543521; Fax: 86-10-62554670

Tel: +86-20- 61647752; Fax: +86-20- 61648199

E-mail: mengxw@mail.ipc.ac.cn;

qqiuxzh@163.com;
Fig. S1 FT-IR spectra of SiO$_2$ and SH-SiO$_2$.

Fig. S2 (a) The fluorescent spectrum of the pure SiO$_2$@CdTe NPs and (b-d) the fluorescent spectra of the first, second, third washing supernatant.
Fig. S3 (A) EDS and (B) XPS of the as-prepared SiO$_2$@CdTe NPs; (C) Absorption spectrum of CdTe QDs and SiO$_2$@CdTe NPs.
Fig. S4: (A) The hydrothermal time, (B) pH value and (C) the amount of SH-SiO$_2$ was respectively adjusted under other constant conditions.
Fig. S5 The trend of the fluorescent intensity of CdTe QDs and SiO$_2$@CdTe NPs response to 0.1 mM H$_2$O$_2$ at the same conditions over time.

Fig. S6 The fluorescence spectra of the NPs changed with 0.075 mM H$_2$O$_2$ over time.
Fig. S7 The SiO$_2$@CdTe NPs could be reused to detect H$_2$O$_2$ eight-times. Relatively, (A) the fluorescent spectra were the first time to detect H$_2$O$_2$ (0.0125 mM); (B) the fifth to detect H$_2$O$_2$ (0.015 mM); (B) the eighth to detect H$_2$O$_2$ (0.02 mM).