SUPPORTING INFORMATION

A novel microwave stimulus remote controlled anticancer drug release system based on Fe₃O₄@ZnO@mGd₂O₃:Eu-P(NIPAm-co-MAA) multifunctional nanocarrier

Hongjin Qiu, Bin Cui*, Weiwei Zhao, Ping Chen, Hongxia Peng, Yaoyu Wang

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, School of Chemistry & Materials Science, Northwest University, Xi’an 710069, PR China

* Corresponding author: Prof. Bin Cui
E-mail: cuibin@nwu.edu.cn, Tel.: +86 029 8153-5030
Figure S1. TGA curves of Fe$_3$O$_4$@ZnO@Gd$_2$O$_3$:Eu and Fe$_3$O$_4$@ZnO@Gd$_2$O$_3$:Eu@P(NIPAM-co-MAA) nanocomposites, respectively.
Figure S2. Cumulative release rates of VP16 from Fe₃O₄@ZnO@Gd₂O₃:Eu@P(NIPAM-co-MAA)-VP16 in response to temperature changes in sodium chloride solution: (a) at pH 7, (b) at pH 5.4.