Supporting Information

Small Band Gap Conjugated Polyelectrolytes for Photothermal Killing of Bacteria

Guangxue Feng, a,b Cheng-Kang Mai, c Ruoyu Zhan, a Guillermo C. Bazan, *c and Bin Liu* a

a Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
b Environmental Research Institute, National University of Singapore, Singapore, 117411
c Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials, and Physics, University of California, Santa Barbara, CA 93106, USA
Calculation of Photothermal Conversion Efficiency

Following Roper’s report, the total balance of the system can be expressed:

\[\sum_i m_i C_{p,i} \frac{dT}{dt} = Q_{CPE} + Q_{Dis} - Q_{surr} \] \hspace{1cm} (1)

where \(m_i \) and \(C_{p,i} \) are the mass and heat capacity of water. \(T \) is the solution temperature, \(Q_{CPE} \) is the energy inputted by CPE. \(Q_{Dis} \) is the energy input by the sample cells, \(Q_{surr} \) is heat conduction away to the air.

The laser induced energy, \(Q_{CPE} \) represent the heat dissipated by electron-phonon relaxation.

\[Q_{CPE} = I(1 - 10^{A_{808}})\eta \] \hspace{1cm} (2)

Where \(I \) is laser power, \(\eta \) is photothermal conversion efficiency. \(A_{808} \) is the absorbance of CPE at 808 nm. In addition, the heat dissipated from the sample cell, \(Q_{Dis} \) is measured to be 14.5 mW using pure water as control.

The energy transfer to air is:

\[Q_{surr} = hS(T - T_{surr}) \] \hspace{1cm} (3)

Where \(h \) is heat transfer coefficient, \(S \) is the surface area. \(T_{surr} \) is the ambient temperature.

As the heat input \(Q_{CPE} \) and \(Q_{Dis} \) is based on laser input, the \(Q_{surr} \) increase with temperature increase. Under laser irradiation, the temperature of the system increases to equilibrium, where the temperature is defined as \(T_{max} \). When temperature reach \(T_{max} \), the input is equal to heat output.

\[Q_{CPE} + Q_{Dis} = hS(T_{max} - T_{surr}) \] \hspace{1cm} (4)

To get \(hS \), a dimensionless drive force temperature is defined as

\[\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}} \] \hspace{1cm} (5)
Supporting Information

and a sample system time constant is defined as

\[
\tau_s = \frac{\sum m_i C_{p,i}}{hS}
\]

(6)

Combine Eq (1) and (6)

\[
\frac{d\theta}{dt} = \frac{1}{\tau_s} \left(\frac{Q_{CPE} + Q_{Dis}}{hS(T_{\text{max}} - T_{\text{surr}} - \theta)} \right)
\]

(7)

At the cooling stage as shown in Figure 1A, laser input is shut off, and \(Q_{CPE} + Q_{Dis} = 0 \), and hence Eq (7) becomes

\[
t = -\tau_s (\ln \theta)
\]

(8)

From Figure S2 plot, \(\tau_s \) is calculated to be 201 s, and 182 s for P1 and P2, respectively, which is used to calculate \(hS \). As laser output area is 0.5 cm\(^2\), the photothermal conversion efficiency is calculated to be 33.2% and 32.0% for P1, and P2, respectively.
Supporting Information

Figure S1. ROS generation of P1 and P2 under irradiation using ABDA as the indicator.
A) Absorbance change of ABDA at 400 nm in the present of P1 or P2 under irradiation.
Absorbance spectra of B)ABDA solution, C) ABDA and P1 solution, D) ABDA and P2 solution, under irradiation.

Figure S2. A) Temperature changes of CPE aqueous solution (50 µg/mL), in which the laser lasts for 10 min, and then the laser is switched off. B) Plot of linear time data.
from the cooling stage versus negative natural logarithm of drive force temperature. The slope represents the sample system time constant τ_s.

Figure S3. A) Absorption spectra of Van A before and after treatment with P1 or P2 (100 µg/mL). B) Zeta potential changes of Van A after treatment with P1 or P2 at different concentrations.

Figure S4. A) Absorption spectra of Van B before and after treatment with P1 or P2 (100 µg/mL). B) Zeta potential changes of Van B after treatment with P1 or P2 at different concentrations.
Figure S5. A) Absorption spectra of *B. Subtilis* after treatment with A) P1 or B) P2 at different concentrations. C) Plot of absorbance at 750 nm versus P1 or P2 at different concentrations. D) Zeta potential changes of *B. Subtilis* after treatment with P1 or P2 at different concentrations.

Figure S6. A) Absorption spectra and B) zeta potential changes of HeLa cells before and after treatment with P1 or P2 (100 µg/mL).
Figure S7. Plate photographs for *E. coli* LB agar plate supplemented with P1 under dark (A, B, C) and upon 808 nm laser irradiation (0.75 W/cm² for 6 min) (C, D, E). The concentrations of P1 used for incubation are 10 (A, D), 20 (B, E) and 100 (C, F) µg/mL.

Figure S8. Plate photographs for *B. subtilis* LB agar plate supplemented with P1 under dark (A, B, C) and upon 808 nm laser irradiation (0.75 W/cm² for 6 min) (C, D, E). The concentrations of P1 used for incubation are 10 (A, D), 20 (B, E) and 100 (C, F) µg/mL.
Figure S9. A) CFU survival percentages and B) photographs of Van A LB agar plate supplemented with P1 in dark and upon 808 nm laser irradiation (0.75 W/cm² for 6 min).
Supporting Information

Figure S10. A) CFU survival percentages and B) photographs of Van B LB agar plate supplemented with P1 in dark and upon 808 nm laser irradiation (0.75 W/cm² for 6 min).

Figure S11. Plate photographs for E coli LB agar plate supplemented with P2 under dark (A, B, C) and upon 808 nm laser irradiation (0.75 W/cm² for 6 min) (C, D, E). The concentrations of P2 used for incubation are 10 (A, D), 20 (B, E) and 100 (C, F) µg/mL.
Figure S12. Plate photographs for *B. Subtilis* LB agar plate supplemented with P2 under dark (A, B, C) and upon 808 nm laser irradiation (0.75 W/cm² for 6 min) (C, D, E). The concentrations of P2 used for incubation are 10 (A, D), 20 (B, E) and 100 (C, F) µg/mL, respectively.

References
