Electronic Supplementary Information (ESI)

Figure S1 shows the effect of mass ratio between anionic polyelectrolyte and cationic polyelectrolyte on the particle size and zeta potential of ChS-HTCC system and ChS-CS system. Unlike ChS-HTCC system can formed NPs with positive or negative surface charge, ChS-CS system only can form positively charged NPs. The absolute value of zeta potential of ChS-CS NPs (pH 5.0) smaller than ChS-HTCC NPs in all mass ratio range of CS/HTCC between 1/4 and 4/1, these results indicated that ChS-HTCC system can formed more stable NPs than ChS-CS system in the same reaction condition. This is due to HTCC has the permanent cationic charges on the polysaccharide backbone; in contrast, the cationic charges of CS can be effected by the pH and the concentration of its counter ion.

Figure S1. The effect of mass ratio between anionic polyelectrolyte and cationic polyelectrolyte on the particle size and zeta potential of ChS-HTCC NPs (red and blue line) and ChS-CS NPs (green and magenta line). (▲) Method A; (●) Method B; (solid line) size; (dot line) zeta potential; Final concentration of HTCC or CS = 2 mg/ml;