Supporting Information for
Polydopamine-induced nanocomposite Ag/CaP coatings on titania nanotubes surface for antibacterial and osteointegration function

Ming Lia, Qian Liua, Zhaojun Jiaa, Xuchen Xua, Yuying Shia, Yan Chenga*, Yufeng Zhenga,b

aCenter for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People’s Republic of China.
bDepartment of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People’s Republic of China.
* Corresponding author email: chengyan@pku.edu.cn

1. Materials and Methods
XRD analysis of the samples was conducted by using a Rigaku DMAX 2400 diffractometer with CuK\textalpha radiation (\(\lambda=1.540598\) Å) at 40 kV. The diffraction angles (2\(\theta\)) were set between 10° and 80°, incremented with a step size of 4°/min.

2. Results and discussions

Fig. S1 The XRD patterns of Ti, TNT, TNT-D, TNT-D-Ag, Ag-D-1CaP and Ag-D-3CaP

The pristine and surface-functionalized Ti samples were subjected to XRD analysis. Except for the typical Bragg diffraction peaks of Ti substrate at 20 values of
38° and 40°, the ones assigned for anatase (TNT) were also observed after the anodization and heat treatment. And the XRD analysis results of the TNT and TNT-D samples had no obvious differences. The successful reduction of Ag by the dopamine that polymerized on TNT surface was also verified by the observation of XRD peaks at 2θ=31.7°, 44.5° and 64.6°, which could be indexed to (100), (200) and (220) planes of Ag.\(^1\,^2\). The Ag-D-3CaP samples displayed predominantly a hydroxyapatite phase peak around 31°, and the peak intensity became much stronger than that of Ag-D-1CaP samples. To be specifically, the XRD peaks located at 25.9°, 31.8°, 46.7°, 59.5° and 53.2° were assigned to the (002), (211), (222), (213) and (004) planes of hydroxyapatite, respectively\(^3\); meanwhile, those broad diffraction peaks suggested the low crystallinity of the deposited hydroxyapatite\(^4\).

3. References