Supporting Information

Theranostic CuS Nanoparticles Targeting Folate Receptors for PET Image-Guided Photothermal Therapy

Min Zhoua,b,\#, Shaoli Songa,c,\#, Jun Zhaoa, Mei Tianb, Chun Lia,*

aDepartment of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United State. \\
bThe Second Hospital of Zhejiang University, Hangzhou, Zhejiang, China \\
cDepartment of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P. R. China

*Corresponding Author: \\
Chun Li, Department of Cancer Systems Imaging, Unit 1907, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Phone: (713) 792-5182; Fax: (713) 794-5456; E-mail: cli@mdanderson.org.

\#These authors contributed equally to this work
Table of Contents

Figure S1: Zeta potential analysis of FA-CuS NPs.

Figure S2: 1H NMR analysis of FA-CuS NPs

Figure S3: Temperature change curve of FA-CuS NPs under NIR laser irradiation at 1.5 W/cm2.

Figure S4: Dynamic light scattering (DLS) of FA-CuS NPs in PBS or FBS solution

Figure S5: Radiolabeling efficiency of FA-64CuCuS NPs

Figure S6: Comparison of the UV-vis spectra of FA-CuS NPs and FA-64CuCuS NPs

Figure S7: Dynamical light scattering (DLS) of FA-64CuCuS NPs

Figure S8: Stability of FA-64CuCuS NPs

Figure S9: Biodistribution of FA-64CuCuS NPs in orthotopic HeyA8 ovarian tumor model
Figure S1: Zeta potential analysis of FA-CuS NPs.

-27.88 mV
Figure S2. ¹H NMR analysis of FA-CuS NPs. The typical peaks of FA at 8.98, 7.59, 6.76, 4.20, and 2.22 ppm representative of FA molecules were observed in the spectrum acquired with purified FA-CuS NPs, indicating FA molecules were successfully coated to the surface of CuS NPs.
Figure S3. Temperature change curve of FA-CuS NPs (100 µg/mL) under NIR laser irradiation (808 nm, 1.5 W/cm²).
Figure S4. Dynamic light scattering (DLS) of FA-CuS NPs in PBS or PBS containing 10% FBS at 37°C for up to 7 days.
Figure S5. Radiolabeling efficiency of FA-[⁶⁴Cu]CuS NPs. Greater than 99% of the radioactivity was associated with FA-[⁶⁴Cu]CuS NPs at the end of synthesis.
Figure S6. Comparison of the UV-vis spectra of FA-CuS NPs and FA-[64Cu]CuS NPs. FA-[64Cu]CuS NPs correlated well with the spectroscopic features observed for the non-radioactive FA-CuS NPs, indicating similarity between the two NPs at the tracer and macroscopic levels.
Figure S7. Dynamical light scatting (DLS) of FA-[64Cu]CuS NPs. The hydrodynamic diameter of the FA-[64Cu]CuS NPs is 21.2 nm. There is no significant difference with the non-radioactive FA-CuS NPs (21.0 nm).
Figure S8. Stability of FA-[64Cu]CuS NPs. After incubation in 10% FBS-PBS solution at 37°C for 24 h, less than 5% of radioactivity was dissociated from FA-[64Cu]CuS NPs.
Figure S9. Biodistribution of FA-[64Cu]CuS NPs in orthotopic HeyA8 ovarian tumor model.

Female nude mice were inoculated with HeyA8 cells intraperitoneally (1x 10^6 cells/mouse). At 20 days after tumor inoculation, mice were injected with FA-[64Cu]CuS NPs intravenously (200 \(\mu\text{Ci/mouse}\)). Mice were killed at 24 h after NP injection, and various tissues were removed for radioactivity counting. The data are presented as mean ± standard deviation (n = 6).