Electronic Properties of Tin Dichalcogenide Monolayers and Effects of Hydrogenation and Tension

Shijie Wen¹, Hui Pan¹*, and Yuebing Zheng²

¹Institute of Applied Physics and Materials Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, China

²Department of Mechanical Engineering, Materials Science & Engineering Program, and Texas Materials Institute, The University of Texas at Austin, Austin, USA

Supporting Data

S-1, The bond length of (a) S-H, (b) Se-H, and (c) Te-H on SnX₂-nH monolayers (X = S, Se, and Te; n = 1 and 2).

S-2, Total energy difference between ferromagnetic (FM) and anti-ferromagnetic (AFM) states for (a) SnS₂, (b) SnSe₂, and (c) SnTe₂ monolayers with and without hydrogenation under tension.
S-3, Calculated band structures of SnSe$_2$-0H-ML at a tension of (a) 4 %, (c) 6 % and (e) 10% and partial density of states at a tension of (b) 4%, (d) 6 % and (f) 10 %. Fermi level is at 0 eV.

S-4, Calculated band structures of SnSe$_2$-1H-ML at a tension of (a) 2 % and (c) 10 % and partial density of states at a tension of (b) 2 % and (d) 10 %. Fermi level is at 0 eV.
S-5, Calculated band structures of SnSe$_2$-2H-ML at a tension of (a) 2 % and (c) 10 % and partial density of states at a tension of (b) 2 % and (d) 10 %. Fermi level is at 0 eV.

S-6, Calculated bond structures of SnTe$_2$-0H-ML at a tension of (a) 2 %, (c) 6 % and (e) 10 %, and partial density of states at a tension of (b) 2 %, (d) 6 % and (f) 10 %. Fermi level is at 0 eV.
S-7, Calculated band structures of SnTe$_2$-1H-ML at a tension of (a) 2% and (c) 10% and partial density of states at a tension of (b) 2% and (d) 10%. Fermi level is at 0 eV.
S-8, Calculated bond structures of SnTe$_2$-2H-ML at a tension of (a) 2 % and (c) 10 % and partial density of states at a tension of (b) 2 % and (d) 10 %. Fermi level is at 0 eV.