Chiral Spin Crossover Nanoparticles and Gels with Switchable Circular Dichroism

Il’ya A. Gural’skiy,* Viktor A. Reshetnikov,a Agnieszka Szebesczyk,b Elzbieta Gumienna-Kontecka,b Andriy I. Marynin,c Sergii I. Shylin,a,d Vadim Ksenofontovd and Igor O. Fritsky*a

SUPPLEMENTARY INFORMATION

Figure S1. TEM image of the nanoparticles 1 (TEM image #1) and the corresponding size distributions: longitudinal size is (80 ± 17) nm, transversal size is (34 ± 8) nm.
Figure S2. TEM image of the nanoparticles 1 (TEM image #2) and the corresponding size distributions: longitudinal size is (76 ± 23) nm, transversal size is (33 ± 10) nm.
Figure S3. DLS measurements on the colloidal solution of nanoparticles prepared with 4 times smaller concentrations of precursors (comparing to sample 1). Size distribution is given in the percent of nanoparticles (distribution by number) in 4 different measurements (298 K). Size of nanoparticles detected with DLS is 58 ± 20 nm.
Figure S4. PXRD from powder (left) and electron diffraction from an individual nanoparticle (right) of 1. Both measurements confirm an almost amorphous structure of nanoparticles.
Figure S5. Reproducibility of magnetic properties of 1 (sample is obtained in a repeated synthesis). $\chi_M T$ vs. T dependence demonstrates a cooperative transition between diamagnetic and paramagnetic states of SCO nanoparticles.
Figure S6. A CD spectrum of [Fe(H$_2$O)$_6$](L-SCA)$_2$ in aqueous solution (c = 0.1 mmol/L). A CD band at 290 nm (positive) is detected.
Figure S7. TEM image of the gel 2.
Figure S8. TEM image of the gel 2.