Supporting Information:

Highly Luminescent Flexible Amino-Functionalized Graphene Quantum Dots@Cellulose Nanofiber-Clay Hybrids for White Light-Emitting Diodes

Hiroyuki Tetsuka,* Akihiro Nagoya & Ryoji Asahi

Toyota Central R&D Laboratories Inc., Nagakute, Aichi 480-1192, Japan, e-mail: h-tetsuka@mosk.tytlabs.co.jp

Figure S1. Comparison of energy levels and HOMO–LUMO gaps in armchair-edged $\text{C}_{54}\text{H}_{18}$ with different functional groups.
Figure S2. a) Bright-field TEM image of green-emitting afGQDs. b) The size distributions of green-emitting af-GQDs.

Figure S3. a) CV curves (anodic scan) of afGQDs: blue line, blue-emitting afGQDs; green line, green-emitting afGQDs; orange-line, orange-emitting afGQDs. The LUMO
levels can be calculated by the following empirical equation: $LUMO = -e(E_{red} + 4.4) \text{eV}$.

b) Energy level diagram for afGQDs: (i), blue-emitting afGQDs; (ii), green-emitting afGQDs; (iii), orange-emitting afGQDs. The HOMO levels were determined by subtracting excitation energy from LUMO energy, where the excitation energy was estimated by the direct conversion of emission peak into eV.

\[LUMO = -e\left(E_{red} + 4.4\right) \text{eV} \]

![Graphs showing energy level diagram](image)

Figure S4. C1s (a) and N 1s (b) X-ray photoelectron spectra for afGQDs; blue line: blue-emitting afGQDs, green line: green-emitting afGQDs, yellow line: yellow-emitting afGQDs, and orange line: orange-emitting afGQDs. c) The table summarises the C/N ratio for different samples.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/N ratio</td>
<td>26.8</td>
<td>8.1</td>
<td>7.8</td>
<td>4.3</td>
</tr>
</tbody>
</table>
ratios calculated from the atomic concentrations: I, blue-emitting afGQDs; II, green-emitting afGQDs; III, yellow-emitting afGQDs; IV, orange-emitting afGQDs.

Figure S5. Comparison of FT-IR spectra: (a) green-emitting afGQDs, (b) starting OGSs. New peaks at 1243, 1617, and 3300–3600 cm\(^{-1}\) appeared after the amino-hydrothermal treatment. These peaks were assigned, respectively, to C-N in-plane, N-H out-of-plane, and N-H in-plane stretching of the amine groups. Additionally, characteristic amide–carbonyl (–NH-CO–) stretching vibration was observed at 1650 cm\(^{-1}\), which implies the formation of amide groups through interactions with the carboxylic groups as Lewis acids.
Figure S6. XRD pattern from green-emitting afGQDs@CNF-clay film.

Figure S7. TG-DTA curve with the weight loss and exo-endothermal reaction of the green-emitting afGQDs@CNF-clay film. Two stages of weight loss were apparent: (i) substantial weight loss attributable to the release of water molecules adsorbed on the clay (<100 °C) and (ii) thermal decomposition of the cellulose nanofiber (320 °C).
Figure S8. Luminescence spectra of blue LED with CNF-clay films without aGQDs under various forward currents.

Figure S9. Excitation power dependence of PL intensity for green-emitting aGQDs@CNF-clay hybrids. The PL measurements were carried out using a 355 nm Nd:YAG laser and a high-sensitive photomultiplier tube detector at room temperature. The PL intensity increased linearly as the laser power was below 20 mWcm\(^{-2}\) and then showed slight saturation at higher powers.