Supporting Information

The first blue phase reactive monomers containing a bi-mesogenic core and their blue phase side-chain copolymers with different acrylate spacer lengths

Chong-Lun Wei,† Yen-Ting Lin,‡ Jin-Huai Chang,† I-Hung Chiang† and Hong-Cheu Lin†*

†Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
‡Institute of Lighting and Energy Photonics, National Chiao Tung University, Tainan, Taiwan

E-mail: linhc@mail.nctu.edu.tw

Table of contents:

1. Reagents, measurements, and characterizations.. S2
2. Preparation of monomers and polymers .. S3
3. Figure S1 ... S10
4. Figure S2 ... S11
5. Figure S3 ... S12
6. Figure S4 ... S13
7. Figure S5 ... S14
8. Table S1 ... S15
Reagents, measurements, and characterizations. All chemicals and solvents were reagent grades and purchased from ACROS, Aldrich, TCI, Fluka, and TEDIA. THF was distilled over sodium/benzophenone to keep anhydrous before use. After distillation over CaH₂, DMF was purified by refluxing with calcium hydride and then distilled. The solvents were degassed by nitrogen 1 h prior to use before reaction. ¹H-NMR spectra were recorded on a Bruker DX-300 (300 MHz for ¹H) spectrometer using CDCl₃, and DMSO-d₆ solvents. Elemental analyses were performed on HERAEUS CHN-OS RAPID elemental analyser. The phase transition properties of monomers and polymers were studied by polarizing optical microscopy (POM) using a Leica DMLP equipped with a temperature control hot stage (Mettler Toledo FP82HT) upon cooling process (cooling rate 0.5°C/min⁻¹). Temperatures and enthalpies of phase transitions were determined by differential scanning calorimetry (DSC, model: Perkin Elmer Pyris 7) under N₂ upon the first cooling and second heating cycles at a rate of 1°C/min⁻¹. The molecular weights of polymers were obtained via gel permeation chromatography (GPC) measurements, which were carried out at 40°C on a Waters 1515 instrument equipped with three Waters μ-Styrage columns (103, 104 and 105 Å) in series and a RI detector (ERMA Inc., ERC-7522). All GPC data were acquired by using tetrahydrofuran (THF) as the eluent at a flow rate of 1.0 mL/min and polystyrene samples as the molecular weight standards. The AFM images were observed by an atomic-force microscope (AFM, Veeco diInnova, scanning rate 0.5 to 1 Hz).
Preparation of monomers and polymers

Synthesis of 6-bromo-1-hexanol (n=6), 1a

\[
\begin{align*}
\text{HO}_n\overset{n\text{OH}}{\longrightarrow} & \xrightarrow{\text{HBr, reflux}} \text{HO}_n\overset{n\text{Br}}{\longrightarrow} \\
1a, n=6 & \quad 1b, n=12
\end{align*}
\]

A mixture of 1,6-hexanediol in aqueous 48% hydrogen bromide (1.2 e.q) and toluene was refluxed for 18 h and a side product H\textsubscript{2}O could be removed by Dean-Stark. The reaction mixture was washed with a saturated aqueous NaHCO\textsubscript{3} solution and water several times, and then the organic layer was dried over Na\textsubscript{2}SO\textsubscript{4} and evaporated. The crude product was purified by silica gel chromatography (\(n\)-hexane/ethyl acetate = 5:1 v/v) to afford compound 1a as a pale yellow oil in a yield of 83%.

\(^{1}\text{H NMR (300 MHz, CDCl}_3\)): \(\delta\) (ppm) 3.71 (t, \(J = 6.5\) Hz, 2H), 3.53 (t, \(J = 6.8\) Hz, 2H), 1.81-1.42 (m, 8H).

Synthesis of 12-bromododecan-1-ol (n=12), 1b

The similar manner was followed as that described above for the preparation of 1a. Compound 1b was obtained as a white solid in a yield of 80%.

\(^{1}\text{H NMR (300 MHz, CDCl}_3\)): \(\delta\) (ppm) 3.65 (t, \(J = 6.52\) Hz, 2H), 3.41 (t, \(J = 6.79\) Hz, 2H), 1.92-1.83 (m, 2H), 1.63-1.54 (m, 2H), 1.52-1.34 (m, 18H), 1.30 ppm (s, 1H).

Synthesis of methyl 4-(heptyloxy)benzoate (n=6), 2a

\[
\begin{align*}
\text{HO}_n\overset{n\text{Br}}{\longrightarrow} & \xrightarrow{\text{K}_2\text{CO}_3, \text{KI}} \text{HO}_n\overset{n\text{OMe}}{\longrightarrow} \\
1a, n=6 & \quad 1b, n=12
\end{align*}
\]

A mixture of methyl 4-hydroxybenzoate (0.1 M), 1a (1.2 e.q), K\textsubscript{2}CO\textsubscript{3} (2 e.q) and potassium iodide in dry acetone was stirred and refluxed under nitrogen for 24 h. After cooling to room temperature, the solvent was removed under reduced pressure, and the residue was taken up in water and extracted with ethyl acetate. Then, the organic layer was dried over Na\textsubscript{2}SO\textsubscript{4}, filtrated and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (\(n\)-hexane/ethyl acetate = 40:1 v/v) to afford compound 2a as a white solid in a yield of 72%.

\(^{1}\text{H NMR (300 MHz, CDCl}_3\)): \(\delta\) (ppm) 7.87 (d, \(J = 9.0\) Hz, 2H), 6.97 (d, \(J = 6.79\) Hz, 2H), 4.02 (t, \(J = 6.3\) Hz, 2H), 3.88(s, 3H), 3.66 (t, \(J = 6.1\) Hz, 2H), 1.86-1.46 (m, 8H), 4.32(s, 1H).

Synthesis of 4-((12-hydroxydodecyl)oxy)benzoate (n=12), 2b

The similar manner was followed as that described above for the preparation of 2a. Compound 2b was obtained as a white solid in a yield of 80%.
1H NMR (300 MHz, CDCl$_3$): δ (ppm) 13.53 – 11.71 (m, 1H), 7.86 (d, $J = 8.3$ Hz, 2H), 6.99 (d, $J = 8.4$ Hz, 2H), 4.32 (s, 1H), 4.02 (s, 2H), 1.71 (m, 2H), 1.39 (m, 4H), 1.24 (m, 14H).

Synthesis of 4-((6-hydroxyhexyl)oxy)benzoic acid (n=6), 3a

![Chemical structure of 2a and KOH in MeOH](image)

To a stirred solution of 2a in ethanol (0.1 M), an aqueous solution of potassium hydroxide (4 e.q) was added dropwise and heated to reflux overnight. After cooling to room temperature, the solvent was removed under reduced pressure, and acidified with 6 N HCl. The precipitated product was collected by filtration and recrystallization from ethanol/H$_2$O (3:1 v/v) to afford compound 3a as a white solid in a yield of 95%.

1H NMR (300 MHz, DMSO-d_6): δ (ppm) 13.54– 11.51 (m, 1H), 7.85 (d, $J = 8.3$ Hz, 2H), 6.98 (d, $J = 8.4$ Hz, 2H), 4.32 (s, 1H), 4.01 (s, 2H), 1.70 (m, 2H), 1.38 (m, 4H), 1.25 (m, 4H).

Synthesis of 4-((12-hydroxydodecyl)oxy)benzoic acid (n=12), 3b

The similar manner was followed as that described above for the preparation of 3a. Compound 3b was obtained as a white solid in a yield of 86%.

1H NMR (300 MHz, DMSO-d_6): δ (ppm) 13.53 – 11.71 (m, 1H), 7.86 (d, $J = 8.3$ Hz, 2H), 6.98 (d, $J = 8.4$ Hz, 2H), 4.32 (s, 1H), 7.85 (d, $J = 8.4$ Hz, 2H), 1.71 (m, 2H), 1.39 (m, 4H), 1.24 (m, 14H).

Synthesis of 4-((6-(acryloyloxy)hexyl)oxy)benzoic acid (n=6), 4a

![Chemical structure of 3a and DMA, acryloyl chloride](image)

To a solution of 3a in 1,4-dioxane (0.7 M), acryloyl chloride in DMA (1.3 e.q) at 0°C under nitrogen was added dropwise to react for 15 min. After the mixture was warmed to room temperature and stirred at 45°C overnight. The resulting mixture was quenched by ice water, extracted with dichloromethane, and then dried over Na$_2$SO$_4$ and evaporated. The precipitated product was collected by filtration and recrystallization from hexane to afford compound 4a as a white solid in a yield of 92%.

1H NMR (300 MHz, DMSO-d_6): δ (ppm) 8.12 – 7.99 (d, 2H), 6.98 – 6.87 (d, 2H), 6.40 (m, $J = 17.3$, 1.5 Hz, 1H), 6.12 (m, $J = 17.3$, 10.4 Hz, 1H), 5.82 (m, $J = 10.4$, 1.6 Hz, 1H), 4.17 (t, $J = 6.6$ Hz, 2H), 4.03 (t, $J = 6.4$ Hz, 2H), 1.82 (m, $J = 14.9$, 7.0 Hz, 2H), 1.72 (m, $J = 13.7$, 6.8 Hz, 2H), 1.57 – 1.41 (m, 4H).
Synthesis of 4-((12-(acryloyloxy)dodecyl)oxy)benzoic acid (n=12), 4b

The similar manner was followed as that described above for the preparation of 4a. Compound 4b was obtained as a white solid in a yield of 90%.

\(^1\)H NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 12.59 (s, 1H), 7.92 – 7.82 (d, 2H), 7.04 – 6.95 (d, 2H), 6.31 (m, 1H), 6.16 (m, 1H), 5.92 (m, 1H), 4.05 (m, 4H), 1.82 – 1.65 (m, 2H), 1.64 – 1.51 (m, 2H), 1.32 (m, 16H).

Synthesis of ethoxymethyl 4-hydroxybenzoate, 5

To a solution of 4-hydroxybenzoic acid in dry-DCM (1.3 M), triethylamine (1.2 e.q) and chloromethyl ethyl ether in dry-DCM (1 M) at 0°C under nitrogen were added dropwise to react for 90 min. After the mixture was warmed to room temperature and washed by HCl (0.25 M). The resulting mixture was extracted with ether, and then dried over Na\(_2\)SO\(_4\) and evaporated. The crude product was purified by silica gel chromatography (n-hexane/ethyl acetate = 40:1 v/v) to afford compound 5 as a light yellow liquid in a yield of 70%.

\(^1\)H NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 10.40 (s, 1H), 7.85 (d, \(J=7.4\) Hz, 2H), 6.86 (d, \(J=7.5\) Hz, 2H), 5.42 (s, 2H), 3.76 – 3.64 (m, 2H), 1.15 (m, \(J=7.0, 5.8\) Hz, 3H).

Synthesis of 4-((ethoxymethoxy)carbonyl)phenyl4-((6-(acryloyloxy)hexyl)oxy) benzoate (n=6), 6a

To a stirred solution of 4a in dry-DCM (1 M), compound 5 in dry-DCM (1 M), 4-(N,N-dimethylamino)pyridine (DMAP) in dry dichloromethane and N,N-dicyclohexylcarbodiimide (DCC) (2.3 e.q) were added and the reaction mixture was stirred at room temperature overnight under nitrogen. The resulting precipitate of dicyclohexylurea (DCU) was filtered off and washed with an excess of dichloromethane. The solvent was evaporated and the crude product was purified by silica gel chromatography (n-hexane/dichloromethane = 1:1 v/v) to afford compound 6a as a white solid in a yield of 82%.

\(^1\)H NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 8.09 (d, \(J=8.8\) Hz, 4H), 7.54 – 7.35 (m, 2H), 7.12 (d, \(J=8.9\) Hz, 2H), 6.32 (m, 1H), 6.17 (m, 1H), 5.93 (m, 1H), 5.51 (s, 2H), 4.11 (q, \(J=6.5\) Hz, 4H), 3.85 – 3.61 (m, 2H), 1.75 (m, 2H), 1.71 – 1.58 (m, 2H), 1.53 – 1.33 (m, 4H), 1.17 (t, \(J=7.1\) Hz, 3H).
Synthesis of 4-((ethoxymethoxy)carbonyl)phenyl4-((12-(acryloyloxy)dodecyl)oxy) benzoate (n=12), 6b

The similar manner was followed as that described above for the preparation of 6a. Compound 6b was obtained as a white solid in a yield of 80%.

1H NMR (300 MHz, DMSO-d_6): δ (ppm) 8.09 (d, $J = 8.8$ Hz, 4H), 7.54 – 7.35 (m, 2H), 7.12 (d, $J = 8.9$ Hz, 2H), 6.32 (m, 1H), 6.17 (m, 1H), 5.93 (m, 1H), 5.51 (s, 2H), 4.11 (q, $J = 6.5$ Hz, 4H), 3.85 – 3.61 (m, 2H), 1.75 (m, 2H), 1.71 – 1.58 (m, 2H), 1.53 – 1.33 (m, 4H), 1.17 (t, $J = 7.1$ Hz, 3H).

Synthesis of 4-((4-((6-(acryloyloxy)hexyl)oxy)benzoyl)oxy)benzoic acid (n=6), 7a

To a solution of 6a in dry-EtOH (0.5 M), PPST (1 e.q) at 50°C under nitrogen was added to react for 16 hrs. After the mixture was warmed to room temperature, the resulting mixture was extracted with dichloromethane, and then dried over Na$_2$SO$_4$ and evaporated. The precipitated product was collected by filtration and recrystallization from hexane to afford compound 7a as a white solid in a yield of 80%.

1H NMR (300 MHz, DMSO-d_6): δ (ppm) 13.05 (s, 1H), 8.05 (m, $J = 15.1, 8.8$ Hz, 4H), 7.40 (d, $J = 8.7$ Hz, 2H), 7.12 (d, $J = 8.9$ Hz, 2H), 6.32 (m, 3H), 6.17 (m, 1H), 5.93 (m, 1H), 4.11 (q, $J = 6.6$ Hz, 4H), 1.75 (m, 2H), 1.71 – 1.58 (m, 2H), 1.53 – 1.33 (m, 4H), 1.17 (t, $J = 7.1$ Hz, 3H).

Synthesis of 4-((4-((12-(acryloyloxy)dodecyl)oxy)benzoyl)oxy)benzoic acid (n=12), 7b

The similar manner was followed as that described above for the preparation of 7a. Compound 7b was obtained as a white solid in a yield of 82%.

1H NMR (300 MHz, DMSO-d_6): δ (ppm) 8.05 (m, $J = 15.1, 8.8$ Hz, 4H), 7.40 (d, $J = 8.5$ Hz, 2H), 7.12 (d, $J = 8.7$ Hz, 2H), 6.36 – 6.26 (m, 1H), 6.21 – 6.10 (m, 1H), 5.93 (d, $J = 10.2$ Hz, 1H), 4.09 (t, $J = 6.5$ Hz, 1H), 1.74 (s, 1H), 1.59 (s, 1H), 1.26 (s, 4H).

Synthesis of (S)-8-bromo-2,6-dimethyl-2-octene, 8

To a stirred solution of (S)-3,7-dimethyloct-6-en-1-ol (0.25 M) and carbon tetrabromide (CBr$_4$) (1.1 e.q) in minimal dichloromethane, a solution of triphenylphosphine (PPh$_3$) (1.2 e.q) in DCM was added to react at 0 °C under nitrogen. After the mixture was warmed to room temperature and stirred for 2 h. The
resulting mixture was poured into water and extracted with dichloromethane. The organic layer was dried over Na$_2$SO$_4$ and evaporated. The crude product was purified by silica gel chromatography (n-hexane) to afford compound 8 as a colorless oil in a yield of 90%.

1H NMR (300 MHz, CDCl$_3$): δ (ppm) 5.22 (t, $J = 6.8$ Hz, 1H), 3.41 (m, 2H), 2.02-1.51 (m, 13H), 1.12 (d, $J = 6.2$ Hz, 3H).

Synthesis of (S)-6-bromo-4-methylhexan-1-ol, 9

\[
\begin{array}{c}
\text{8} \\
\text{O$_3$ NaBH$_4$ MeOH}
\end{array} \rightarrow
\begin{array}{c}
\text{9}
\end{array}
\]

A solution of 8 in methanol (0.2 M) at -78 °C was ozonized under a stream of ozone purge for 2 h. The solution color changed from transparent to light yellow. After termination of the ozonolysis, compound 9 was monitored until disappearance by TLC. Subsequently, sodium borohydride in methanol (1.1 M) was added in portions to the solution and the mixture was brought to -65 °C, and the solution color changed from light yellow to transparent. A further portion of sodium borohydride (1 e.q) was added within 15 min, and the mixture was warmed to room temperature and stirred overnight. Water was added to the resulting mixture, and the solution was acidified with sulphuric acid and saturated with ammonium chloride and extracted with diethyl ether. The organic layer was sequentially washed with water, 10% aqueous sodium bicarbonate solution, and water, and then dried with sodium sulfate. The solvent was evaporated and the crude product was purified by silica gel chromatography (n-hexane/ethyl acetate = 5:1 v/v) to afford compound 9 as a colorless oil in a yield of 55%.

1H NMR (300 MHz, CDCl$_3$): δ (ppm) 3.81 (t, $J = 6.3$ Hz, 2H), 3.42 (t, $J = 6.3$ Hz, 2H), 1.81-1.21 (m, 7H), 1.13 (d, $J = 6.2$ Hz, 3H).

Synthesis of (S)-6-[(4-cyano-4'-biphenylyl)oxy]-4-methylhexanol, 10

\[
\begin{array}{c}
\text{9} \\
\text{K$_2$CO$_3$, KI acetone, reflux}
\end{array} \rightarrow
\begin{array}{c}
\text{10}
\end{array}
\]

The similar manner was followed as that described above for the preparation of 2a. Compound 10 was obtained as a light yellow solid in a yield of 74%.

1H NMR (300 MHz, CDCl$_3$): δ (ppm) 7.83 (t, $J = 8.9$ Hz, 4H), 7.61 (d, $J = 8.8$ Hz, 2H), 7.21 (d, $J = 8.9$ Hz, 2H), 4.23 (t, $J = 6.4$ Hz, 2H), 4.12 (t, $J = 6.3$ Hz, 2H), 1.82-1.24 (m, 7H), 1.11 (d, $J = 6.2$ Hz, 3H).
The similar manner was followed as that described above for the preparation of 6a. Compound M1 was obtained as a light yellow solid in a yield of 78%.

\[
\text{H NMR (300 MHz, CDCl}_3\text{): } \delta \text{ (ppm) 8.02 (t, } J = 8.5 \text{ Hz, 4H), 7.81 (s, 4H), 7.68 (d, } J = 8.8 \text{ Hz, 2H), 7.36 (d, } J = 8.7 \text{ Hz, 2H), 7.11 (d, } J = 9.0 \text{ Hz, 2H), 7.04 (d, } J = 8.8 \text{ Hz, 2H), 6.32 (m, 1H), 6.17 (m, 1H), 5.93 (m, 1H), 4.30 (t, } J = 6.3 \text{ Hz, 2H), 4.11 (m, 6H), 1.75 (m, 6H), 1.66 (m, 4H), 1.43 (m, 7H), 0.97 (d, } J = 6.3 \text{ Hz, 3H). Anal. calcd for C}_{43}\text{H}_{45}\text{NO}_8: C, 72.69, H, 6.22, N, 1.82; found: C, 73.38, H, 6.44, N, 1.99\%.
\]

Synthesis of (S)-6-((4'-cyano-[1,1'-biphenyl]-4-yl)oxy)-4-methylhexyl 4-((4-((12-acryloyloxy)dodecyl)oxy)benzoyl)oxy)benzoate, M2

The similar manner was followed as that described above for the preparation of 6b. Compound M2 was obtained as a light yellow solid in a yield of 76%.

\[
\text{H NMR (300 MHz, CDCl}_3\text{): } \delta \text{ (ppm) 8.02 (t, } J = 8.1 \text{ Hz, 4H), 7.81 (s, 4H), 7.68 (d, } J = 8.6 \text{ Hz, 2H), 7.35 (d, } J = 8.5 \text{ Hz, 2H), 7.10 (d, } J = 9.0 \text{ Hz, 4H), 7.05 (d, } J = 8.8 \text{ Hz, 2H), 6.31 (m, 1H), 6.16 (m, 1H), 5.92 (m, 1H), 4.29 (t, } J = 6.3 \text{ Hz, 2H), 4.08 (m, 6H), 1.75 (m, 6H), 1.59 (m, 5H), 1.42 (m, 2H), 1.26 (m, 15H), 0.97 (d, } J = 6.0 \text{ Hz, 3H). Anal. calcd for C}_{49}\text{H}_{57}\text{NO}_8: C, 74.38, H, 7.39, N, 1.69; found: C, 74.69, H, 7.29, N, 1.78\%.
\]

General synthetic procedures of homopolymers and copolymers.

All of the polymerizations were carried out by the free radical polymerization described as follows: To a Schlenk tube, monomers M1 and M2 were mixed with appropriate molar ratios (0:10, 9:1, 3:7, 5:5, 7:3, 1:9 and 10:0) dissolved in dry chlorobenzen (0.146 M) and AIBN (0.03 e.q) as an initiator. The solution was degassed by three freeze-pump-thaw cycles and then sealed off. The reaction mixture was stirred and
heated at 60°C for 24 h. After polymerization, the polymer was precipitated into diethyl ether for homo- and co-polymers. The precipitated polymers were collected, washed with diethyl ether, and dried under high vacuum.

P1(soln) (m/n = 10/0) 1H NMR (300 MHz, CDCl$_3$): \(\delta \) (ppm): 8.01 (br, 4H), 7.67-7.45 (m, 6H), 7.14 (br, 2H), 6.94-6.87 (m, 4H), 4.29-3.96 (m, 8H), 1.77-1.55 (br, 10H), 1.43-0.96 (br, 11H). Mn: 331,559 g mol$^{-1}$, PDI: 1.25 Mw/Mn.

P12(soln:9/1) (m/n = 8.4/1.6) 1H NMR (300 MHz, CDCl$_3$): \(\delta \) (ppm): 7.98 (br, 4H), 7.58-7.43 (m, 6H), 6.97 (br, 2H), 6.92 (m, 4H), 4.27-3.97 (m, 8H), 2.09-1.55 (br, 12H), 1.25-0.97 (br, 11H). Mn: 323,381 g mol$^{-1}$, PDI: 1.25 Mw/Mn.

P12(soln:3/7) (m/n = 7/3) 1H NMR (300 MHz, CDCl$_3$): \(\delta \) (ppm): 8.00 (br, 4H), 7.56-7.45 (m, 6H), 7.15 (br, 2H), 6.99-6.89 (m, 4H), 4.34-3.96 (m, 8H), 1.78-1.56 (br, 11H), 1.37-0.94 (br, 14H). Mn: 326,051 g mol$^{-1}$, PDI: 1.22 Mw/Mn.

P12(soln:5/5) (m/n = 5/5) 1H NMR (300 MHz, CDCl$_3$): \(\delta \) (ppm): 8.00 (br, 4H), 7.57-7.45 (m, 6H), 7.14 (br, 2H), 6.91 (m, 4H), 4.29-4.00 (m, 8H), 1.78-1.54 (br, 10H), 1.26-1.03 (br, 17H). Mn: 303,541 g mol$^{-1}$, PDI: 1.27 Mw/Mn.

P12(soln:7/3) (m/n = 3/7) 1H NMR (300 MHz, CDCl$_3$): \(\delta \) (ppm): 8.07 (br, 4H), 7.55-7.44 (m, 6H), 6.99 (br, 2H), 6.99-6.89 (m, 4H), 4.34-3.99 (m, 8H), 1.78-1.56 (br, 13H), 1.37-0.94 (br, 16H). Mn: 323,145 g mol$^{-1}$, PDI: 1.20 Mw/Mn.

P12(soln:9/1) (m/n = 1.3/8.7) 1H NMR (300 MHz, CDCl$_3$): \(\delta \) (ppm): 8.04 (br, 4H), 7.60-7.48 (m, 6H), 6.93 (br, 2H), 6.93 (m, 4H), 4.30-4.00 (m, 8H), 1.79-1.54 (br, 10H), 1.29-0.98 (br, 21H). Mn: 330,047 g mol$^{-1}$, PDI: 1.28 Mw/Mn.

P2(soln) (m/n = 0/10) 1H NMR (300 MHz, CDCl$_3$): \(\delta \) (ppm): 8.04 (br, 4H), 7.60-7.48 (m, 6H), 6.93 (br, 2H), 6.93-6.84 (m, 4H), 4.30-4.00 (m, 8H), 1.79-1.54 (br, 15H), 1.43-1.01 (br, 18H). Mn: 334,718 g mol$^{-1}$, PDI: 1.21 Mw/Mn.
Fig. S1 1HNMR spectra of (a) M1/M2(5/5) and (b) P12(soln:5/5) in CDCl$_3$. The copolymer composition of P12(soln:5/5) was estimated by comparing with M1/M2(5/5) after solution polymerization with the relative integration areas of the peaks at 0.5-2.0 ppm as 3 protons (i.e., the vinyl acrylate group). This result indicated that the feed-in and output molar ratios were almost consistent. The compositions of all copolymers were all evaluated by this method.
Fig. S2 GPC curves of (a) P1(soln) (b) P12(soln:5/5) (c) P2(soln) (d) P1(photo) (e) P12(photo:5/5) and (f) P2(photo).
Fig. S3 DSC curves of (a) P1(soln) (b) P12(soln:5/5) (c) P2(soln) (d) P1(photo) (e) P12(photo:5/5) and (f) P2(photo).
Fig. S4 Phase diagrams (upon cooling) of binary mixtures, photo- and solution-polymerizations with different molar ratios of M1.
Fig. S5 An expanded AFM image of P12(soln:5/5) in BPIII (at 146.1°C) was quenched by liquid N₂. (White scale bar: 1µm.)
Table S1 Molecular weights (Mn and Mw) and polydispersity indexes (PDI) of solution- and photo-polymers

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Solution-Polymerization Mn (g/mol)</th>
<th>PDI (Mw/Mn)</th>
<th>Compounds</th>
<th>Photo-Polymerization Mn (g/mol)</th>
<th>PDI (Mw/Mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1(soln)</td>
<td>331,559</td>
<td>1.25</td>
<td>P1(photo)</td>
<td>260,766</td>
<td>1.42</td>
</tr>
<tr>
<td>P12(soln:9/1)</td>
<td>323,381</td>
<td>1.25</td>
<td>P12(photo:9/1)</td>
<td>264,462</td>
<td>1.39</td>
</tr>
<tr>
<td>P12(soln:7/3)</td>
<td>326,051</td>
<td>1.22</td>
<td>P12(photo:7/3)</td>
<td>244,592</td>
<td>1.40</td>
</tr>
<tr>
<td>P12(soln:5/5)</td>
<td>303,541</td>
<td>1.27</td>
<td>P12(photo:5/5)</td>
<td>241,019</td>
<td>1.42</td>
</tr>
<tr>
<td>P12(soln:3/7)</td>
<td>323,145</td>
<td>1.20</td>
<td>P12(photo:3/7)</td>
<td>245,902</td>
<td>1.40</td>
</tr>
<tr>
<td>P12(soln:1/9)</td>
<td>330,047</td>
<td>1.28</td>
<td>P12(photo:1/9)</td>
<td>266,011</td>
<td>1.39</td>
</tr>
<tr>
<td>P2(soln)</td>
<td>334,718</td>
<td>1.21</td>
<td>P2(photo)</td>
<td>267,871</td>
<td>1.41</td>
</tr>
</tbody>
</table>

a These datas were determined by gel permeation chromatography (GPC).