SUPPORTING INFORMATION

Aggregation Induced Emission Based Fluorescence pH and Temperature Sensors: Probing Polymer Interactions in Poly(N-isopropyl acrylamide-co-tetra(phenyl)ethene acrylate)/Poly(methacrylic acid) Interpenetrating Polymer Networks

Hui Zhou,† Feng Liu,‡ Xiaobai Wang,† Hong Yan,† Jing Song,† Qun Ye,† Ben Zhong Tang*,§ and Jianwei Xu*,†,‡

‡ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore.
§ Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

*Corresponding author: Jianwei Xu and Ben Zhong Tang
Email address: jw-xu@imre.a-star.edu.sg; tangbenz@ust.hk
Mailing address: 3 Research Link, Singapore 117602
Tel: 65-6872-7543
Fax: 65-6872-7528
Table content

Scheme S1. Synthetic routes of monomers (M2 and M3) and corresponding copolymers (P5 and P6).

Figure S1. 1H NMR spectrum of P1 in CDCl$_3$.

Figure S2. (a) TGA thermograms of PNIPAM and P1-6 recorded under nitrogen at a heating rate of 20 °C/min. (b) DSC thermograms of PNIPAM and P1-6 recorded under nitrogen at a heating rate of 10 °C/min.

Figure S3. (a) Calibration curve for determination of copolymer composition, using 4-(1,2,2-triphenylvinyl)phenol (TPE-OH) as standard. (b) Enlarged calibration curve for P4-P6. The absorbance of TPE-OH at 318 nm was recorded in the presence of PNIPAM in THF. [TPE-OH] = 10$^{-5}$ to 10$^{-4}$ M, [PNIPAM] = 0.50 mg/mL, 20 °C. Open squares and circles are the data points for the standard and the copolymers, respectively.

Figure S4. Fluorescence spectra of polymer P1-6 in THF/H$_2$O mixtures (λ_{ex} = 318 nm, [P4] = 0.5 mg/mL, 20 °C).

Figure S5. Fluorescence spectrum of monomers (M1-3) and copolymers (P1-6) in solid state. Films were fabricated by drop coating of 50.0 µL THF solution, [C] = 5.0 mg/mL.

Figure S6. Fluorescence spectra of polymer in solution and film. P4 and P4+PS in THF, [P4] = 0.5 mg/mL, [PS] = 0.5 mg/mL. P4 film was fabricated by drop coating of 50.0 µL THF solution of P4, [P4] = 5.0 mg/mL. P4+PS film was fabricated by drop coating of 50.0 µL THF solution of P4 and PS, [P4] = 5.0 mg/mL, [PS] = 5.0 mg/mL.

Figure S7. (a) Plot of I/I_0 vs temperature of P4. (b) The particle size and solution turbidity (kcps) vs temperature of P4. [P4] = 0.5 mg/mL, 10.0 mM Na$_2$HPO$_4$-citric acid buffer, I_0 and I are the fluorescence intensity at 14 °C and a measured temperature, respectively. The fluorescence intensity was recorded at 469 nm; λ_{ex} = 318 nm.

Figure S8. 1H NMR spectra of P4 in D$_2$O at various temperatures.

Figure S9. Plot of fluorescence intensity vs temperature of P4 with different concentration in H$_2$O. Concentration of copolymers P4 is 0.25, 0.50 and 1.0 mg/mL, respectively. Fluorescence was measured at 469 nm, excited at 318 nm.

Figure S10. 1H NMR spectrum of monomer (M1).

Figure S11. 13C NMR spectrum of monomer (M1).

Figure S12. HRMS spectrum of monomer (M1).

Figure S13. FTIR spectrum of monomer (M1).

Figure S14. 13C NMR spectrum of P1 in CDCl$_3$.

Figure S15. FTIR spectrum of P1.

Figure S16. 1H NMR spectrum of P2 in CDCl$_3$.

Figure S17. 13C NMR spectrum of P2 in CDCl$_3$.
Figure S18. FTIR spectrum of P2. (13)
Figure S19. 1H NMR spectrum of P3 in CDCl$_3$. (14)
Figure S20. 13C NMR spectrum of P3 in CDCl$_3$. (14)
Figure S21. FTIR spectrum of P3. (15)
Figure S22. 1H NMR spectrum of P4 in CDCl$_3$. (15)
Figure S23. 13C NMR spectrum of P4 in CDCl$_3$. (16)
Figure S24. FTIR spectrum of P4. (16)
Figure S25. 1H NMR spectrum of P5 in CDCl$_3$. (17)
Figure S26. FTIR spectrum of P5. (17)
Figure S27. 1H NMR spectrum of P6 in CDCl$_3$. (18)
Figure S28. FTIR spectrum of P6. (18)
Reference (19)
Scheme S1. Synthetic routes of monomers (M2 and M3)1,2 and corresponding copolymers (P5 and P6).

Figure S1. 1H NMR spectrum of P1 in CDCl$_3$.
Figure S2. (a) TGA thermograms of PNIPAM and P1-6 recorded under nitrogen at a heating rate of 20 °C/min. (b) DSC thermograms of PNIPAM and P1-6 recorded under nitrogen at a heating rate of 10 °C/min.

Figure S3. (a) Calibration curve for determination of copolymer composition, using 4-(1,2,2-triphenylvinyl)phenol (TPE-OH) as standard. (b) Enlarged calibration curve for
P4-P6. The absorbance of TPE-OH at 318 nm was recorded in the presence of PNIPAM in THF. [TPE-OH] = 10^{-5} to 10^{-4} M, [PNIPAM] = 0.50 mg/mL, 20 °C. Open squares and circles are the data points for the standard and the copolymers, respectively.
Figure S4. Fluorescence spectra of polymer P1-6 in THF/H$_2$O mixtures ($\lambda_{ex} = 318$ nm, [P4] = 0.5 mg/mL, 20 °C).

Figure S5. Fluorescence spectra of monomers (M1-3) and copolymers (P1-6) in solid state. Films were fabricated by drop coating of 50.0 µL THF solution, [C] = 5.0 mg/mL.
Figure S6. Fluorescence spectra of polymer in solution and film. P4 and P4+PS in THF, [P4] = 0.5 mg/mL, [PS] = 0.5 mg/mL. P4 film was fabricated by drop coating of 50.0 µL THF solution of P4, [P4] = 5.0 mg/mL. P4+PS film was fabricated by drop coating of 50.0 µL THF solution of P4 and PS, [P4] = 5.0 mg/mL, [PS] = 5.0 mg/mL.

Figure S7. (a) Plot of I/I₀ vs temperature of P4. (b) The particle size and solution turbidity (kcps) vs temperature of P4. [P4] = 0.5 mg/mL, 10.0 mM Na₂HPO₄-citric acid buffer, I₀ and I are the fluorescence intensity at 14 °C and a measured temperature, respectively. The fluorescence intensity was recorded at 469 nm; λₑₓ = 318 nm.
Figure S8. 1H NMR spectra of P4 in D$_2$O at various temperatures, [C] = 0.5 mg/mL, scan number = 80.

Figure S9. Plot of fluorescence intensity vs temperature of P4 with different concentration in H$_2$O. Concentration of copolymers P4 is 0.25, 0.50 and 1.0 mg/mL, respectively. Fluorescence was measured at 469 nm, excited at 318 nm.
Figure S10. 1H NMR spectrum of monomer (M1).

Figure S11. 13C NMR spectrum of monomer (M1).
Figure S12. HRMS spectrum of monomer (M1).

Figure S13. FTIR spectrum of monomer (M1).
Figure S14. 13C NMR spectrum of P1 in CDCl$_3$.

Figure S15. FTIR spectrum of P1.
Figure S16. 1H NMR spectrum of P2 in CDCl$_3$.

Figure S17. 13C NMR spectrum of P2 in CDCl$_3$.
Figure S18. FTIR spectrum of P2.

Figure S19. 1H NMR spectrum of P3 in CDCl$_3$.
Figure S20. 13C NMR spectrum of P3 in CDCl$_3$.

Figure S21. FTIR spectrum of P3.
Figure S22. 1H NMR spectrum of P4 in CDCl$_3$.

Figure S23. 13C NMR spectrum of P4 in CDCl$_3$.
Figure S24. FTIR spectrum of P4.

Figure S25. 1H NMR spectrum of P5 in CDCl$_3$.
Figure S26. FTIR spectrum of P5.

Figure S27. 1H NMR spectrum of P6 in CDCl$_3$.
Figure S28. FTIR spectrum of P6.

REFERENCES