Electronic Supplemental Information

In situ SERS study of surface plasmon induced nitration on Ag@Polydopamine@Au structure

Wei Huang,^{a§} Qiang Jing,^{a§} Yunchen Du,^{*a} Bin Zhang,^a Xiangli Meng,^a Mengtao Sun,^b Kirk S. Schanze,^c Hong Gao,^d and Ping Xu^{*a}

^a Department of Chemistry, Harbin Institute of Technology, Harbin 150001, China. Email: pxu@hit.edu.cn

^b Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China.

^c Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.

^d Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China

[§] These two authors contributed equally to this work.

ADDITIONAL FIGURES

Fig. S1. SEM images of the Ag particles after direct reacting with HAuCl₄ for 10 min (up) and 30 min (down).

Fig. S2. SEM image of the Ag@PDA particles after reacting with HAuCl₄, before washing with ammonia solution.

Fig. S3. SEM images of the as-prepared Ag@PDA@Au particles under different magnifications. These particles can be easily dispersed evenly on substrates, making the single particle SERS technique possible.

Fig. S4. Extinction spectra of Ag, Ag@PDA, and Ag@PDA@Au particles. The peak located around 510 nm indicates the successful decoration of 10-20 nm Au nanoparticles.

Fig. S5. Extinction spectrum of meatball-like Au particles in cyclohexane.

Fig. S6. XRD pattern of the as-prepared meatball-like Au particles.

Fig. S7. SERS spectrum of 10-8 M benzenethiol (BT) on the as-prpeared Ag@PDA particles.

Fig. S8. SERS spectrum of 10⁻⁸ M benzenethiol (BT) on the as-prpeared Ag@PDA@Au particles.

Fig. S9. SERS spectra of a mixture of benzenethiol (BT) and HNO₃ on the Ag@PDA@Au particles in dark for different time periods. It can be seen that no nitration (-NO₂ peak at 1330 cm⁻¹) happened in the dark environment.

Fig. S10. SERS spectra obtained by heating a mixture of benzenethiol (BT) and HNO₃ with the presence of Ag@PDA@Au particles at different temperatures for 10 min.

Fig. S11. SERS spectra obtained by heating a mixture of benzenethiol (BT) and HNO₃ with the presence of Ag@PDA@Au particles at 65 °C for different time periods.

Fig. S12. SERS spectra obtained by heating a mixture of benzenethiol (BT) and HNO₃ without the presence of Ag@PDA@Au particles at 65 °C for different time periods.

Fig. S13. Time-dependent SERS spectra showing the reaction of benzenethiol and nitric acid on a single Au hierarchical particle, with a laser wavelength of 633 nm and power of 54 μ W. Spectra were recorded every 2 min under continuous laser irradiation.

Fig. S14. Time-dependent SERS spectra showing the reaction of benzenethiol and nitric acid on a single Ag hierarchical particle, with a laser wavelength of 633 nm and power of 54 μ W. Spectra were recorded every 5 min under continuous laser irradiation.