Electronic Supplementary Information

New AIEgens containing dibenzothiophene-S,S-dioxide and tetraphenylethene moieties: similar structures but much different hole/electron transport properties

Xuejun Zhan, Zhongbin Wu, Yuxuan Lin, Sheng Tang, Jie Yang, Jie Hu, Qian Peng, Dongge Ma,* and Qianqian Li, Zhen Li*

1Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, Wuhan, 430072, China.

E-mail: lizhen@whu.edu.cn or lichemlab@163.com

2 Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

E-mail: mdg1014@ciac.ac.cn

3 Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China.

4The authors contributed equally to this paper.
Table of Contents

1. **Chart S1.** Several molecules disclosing various approaches to suppress intramolecular charge transfer.

2. **Figure S1.** TGA curves recorded under N₂ at a heating rate of 10 °C/min.

3. **Figure S2.** DSC curves recorded under N₂ at a heating rate of 10 °C/min.

4. **Figure S3.** UV spectra in THF solution (10 μM) (A) and in the film state (B).

5. **Figure S4.** PL spectra in the film state.

6. **Figure S5.** (A) PL spectra of DBTO-pTPE in THF/H₂O mixtures with different water fractions (f₃). Concentration (μM): 10; excitation wavelength (nm): 370. (B) Plots of fluorescence quantum yields determined in THF/H₂O solutions using 9,10-diphenylanthracene (Φ = 90% in cyclohexane) as standard versus water fractions. Inset in (B): photos in THF/water mixtures (f₃ = 0 and 99%) taken under the illumination of a 365 nm UV lamp.

7. **Figure S6.** (A) PL spectra of DBTO-MeTPE in THF/H₂O mixtures with different water fractions (f₃). Concentration (μM): 10; excitation wavelength (nm): 350. (B) Plots of fluorescence quantum yields determined in THF/H₂O solutions using 9,10-diphenylanthracene (Φ = 90% in cyclohexane) as standard versus water fractions. Inset in (B): photos in THF/water mixtures (f₃ = 0 and 99%) taken under the illumination of a 365 nm UV lamp.

8. **Figure S7.** (A) PL spectra of DBTO-mTPE in THF/H₂O mixtures with different water fractions (f₃). Concentration (μM): 10; excitation wavelength (nm): 320. (B) Plots of fluorescence quantum yields determined in THF/H₂O solutions using 9,10-diphenylanthracene (Φ = 90% in cyclohexane) as standard versus water fractions. Inset in (B): photos in THF/water mixtures (f₃ = 0 and 99%) taken under the illumination of a 365 nm UV lamp.

9. **Figure S8.** Calculated molecular orbital amplitude plots of HOMO and LUMO levels and optimized molecular structures.

10. **Figure S9.** (a) Current density-voltage-luminance characteristics, (b) Change in current efficiency with the current density in multilayer EL devices and (c-e) EL spectra of the AIEgens DBTO-pTPE (device A, c), DBTO-MeTPE (device B, d) and DBTO-mTPE (device C, e) at different voltages. Device configurations: ITO / MoO₃ (10 nm) / NPB (60 nm) / mCP (10 nm) / EML (15 nm) / TPBi (30 nm) / LiF (1.5 nm) / Al.

11. **Figure S10.** (a) Luminance-current-density characteristics, (b) Power efficiency-current density characteristics, (c) External quantum efficiency-current density characteristics and (d) Current efficiency-luminance characteristics of the AIEgens DBTO-pTPE (device A), DBTO-MeTPE (device B) and DBTO-mTPE (device C). Device configurations: ITO / MoO₃ (10 nm) / NPB (60 nm) / mCP (10 nm) / EML (15 nm) / TPBi (30 nm) / LiF (1.5 nm) / Al.
12. **Figure S1.** Energy level diagram of the multilayer devices.
13. **Figure S12-17.** NMR spectra of DBTO-\(\rho\)TPE, DBTO-MeTPE and DBTO-\(m\)TPE.

Chart S1. Several molecules disclosing various approaches to suppress intramolecular charge transfer.
Figure S1. TGA curves recorded under N₂ at a heating rate of 10 °C/min.

Figure S2. DSC curves recorded under N₂ at a heating rate of 10 °C/min.
Figure S3. UV-vis spectra in THF solution (~10 μM) (A) and in the thin solid film (B).

Figure S4. PL spectra in the solid films.
Figure S5. (A) PL spectra of DBTO-pTPE in THF/H₂O mixtures with different water fractions (f_w). Concentration (µM): 10; excitation wavelength (nm): 370. (B) Plots of fluorescence quantum yields determined in THF/H₂O solutions using 9,10-diphenylantracene (Φ = 90% in cyclohexane) as standard versus water fractions. Inset in (B): photos of SFTPE in THF/water mixtures (f_w = 0 and 99%) taken under the illumination of a 365 nm UV lamp.

Figure S6. (A) PL spectra of DBTO-McTPE in THF/H₂O mixtures with different water fractions (f_w). Concentration (µM): 10; excitation wavelength (nm): 350. (B) Plots of fluorescence quantum yields determined in THF/H₂O solutions using 9,10-diphenylantracene (Φ = 90% in cyclohexane) as standard versus water fractions. Inset in (B): photos of SFTPE in THF/water mixtures (f_w = 0 and 99%) taken under the illumination of a 365 nm UV lamp.
Figure S7. (A) PL spectra of DBTO-\textit{m}TPE in THF/H\textsubscript{2}O mixtures with different water fractions (f_w). Concentration (μM): 10; excitation wavelength (nm): 320. (B) Plots of fluorescence quantum yields determined in THF/H\textsubscript{2}O solutions using 9,10-diphenylanthracene ($\Phi = 90\%$ in cyclohexane) as standard versus water fractions. Inset in (B): photos of SFTPE in THF/water mixtures ($f_w = 0$ and 99%) taken under the illumination of a 365 nm UV lamp.

Figure S8. Calculated molecular orbital amplitude plots of HOMO and LUMO levels and optimized molecular structures.
(a) Current Density (mA/cm2) vs. Voltage (V)

(b) Current Efficiency (cd/A) vs. Current Density (mA/cm2)
Figure S9. (a) Current density-voltage-luminance characteristics, (b) Change in current efficiency with the current density in multilayer EL devices and (c-e) EL spectra of the AIEgens DBTO-\textit{p}TPE (device A, c), DBTO-\textit{Me}TPE (device B, d) and DBTO-\textit{m}TPE (device C, e) at different voltages. Device configurations: ITO / MoO\textsubscript{3} (10 nm) / NPB (60 nm) / mCP (10 nm) / EML (15 nm) / TPBi (30 nm) / LiF (1.5 nm) / Al.
(b) Device A
Device B
Device C

Power Efficiency (lm/W)
Current Density (mA/cm2)

(c) Device A
Device B
Device C

External Quantum Efficiency
Current Density (mA/cm2)
Figure S10. (a) Luminance-current density characteristics, (b) Power efficiency- current density characteristics, (c) External quantum efficiency- current density characteristics and (d) Current efficiency-luminance characteristics of the AIEgens DBTO-pTPE (device A), DBTO-MeTPE (device B) and DBTO-mTPE (device C). Device configurations: ITO / MoO₃ (10 nm) / NPB (60 nm) / mCP (10 nm) / EML (15 nm) / TPBi (30 nm) / LiF (1.5 nm) /Al.

Figure S11. Energy level diagram of the multilayer devices.
Figure S12. 1H NMR spectrum of the DBTO-pTPE in CDCl$_3$.

Figure S13. 13C NMR spectrum of the DBTO-pTPE in CDCl$_3$.
Figure S14. 1H NMR spectrum of the DBTO-MeTPE in CDCl$_3$.

Figure S15. 13C NMR spectrum of the DBTO-MeTPE in CDCl$_3$.
Figure S16. 1H NMR spectrum of the DBTO-mTPE in CDCl$_3$.

Figure S17. 13C NMR spectrum of the DBTO-mTPE in CDCl$_3$.