Electronic Supplementary Information

Tuning the magneto-optical response of TbPc$_2$ single molecule magnets by the choice of the substrate

Peter Robaschik,a,1 Michael Fronk,a Marius Toader,b Svetlana Klyatskaya,c Fabian Ganss,d Pablo F. Siles,e,f Oliver G. Schmidt,e,f Manfred Albrecht,d,g Michael Hietschold,b Mario Ruben,c,h Dietrich R.T. Zahn,a and Georgeta Salvan*a

aSemiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany. Email: salvan@physik.tu-chemnitz.de; Fax: +49 371 531 833137; Tel: +49 371 531 33137
bSolid Surfaces Analysis Group, Technische Universität Chemnitz, 09107 Chemnitz, Germany
cInstitute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
dSurface and Interface Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
eMaterial Systems for Nanoelectronics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
fInstitute for Integrative Nanosciences, IFW Dresden, 01069 Dresden, Germany
gLehrstuhl für Experimentalphysik IV, Universität Augsburg, 86159 Augsburg, Germany
hUniversité de Strasbourg, Institute de Physique et de Chimie des Matériaux de Strasbourg, 67034 Strasbourg Cedex 2, France
1Present address: Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
Fig. S1. Maldi-ToF spectrum of [TbPc$_2$]0 complex shows the parent ions at $m/z = 1183$. An expanded view of the peak shows an isotope distribution, which is in very good agreement with theoretical predictions.
Fig. S2. The UV/vis/nIR absorption spectrum is similar to the neutral green form of [LnPc2]0 spectra [D. Markovitsi, T.-H. Tran-Thi, Chem. Phys. Letters, 1987, 137, 107-112] with the most intense band - the Q-band - at 672 nm. In the near-infrared region two main bands are observed at about 906 nm and 1300-1800 nm. The shorter wavelength band is related to the radical part and attributed to the 1e_g(\pi)\rightarrow a_u(\pi) transition; the lower-energy band is assigned to an intramolecular charge transfer (CTI). Those signals are the fingerprints of the neutral species [LnPc2]0 and, thus, confirm their nature. All the near-infrared bands disappear upon reduction by hydrazine hydrate (1% vv).
Fig. S3. MOKE spectrum of a blank piece of Si(111) covered with native oxide.
Fig. S4. VASE (Variable Angle Spectroscopic Ellipsometry) spectra of the 62 nm TbPc$_2$ on SiO$_2$/Si sample. The green dashed lines belong to the experimental data and the red solid lines represent the model fit. The model consists of eleven Gaussian oscillators and a uniaxial anisotropy of the optical properties is assumed.
Fig. S5. Diagonal elements of the dielectric tensor in the plane (left) and the calculated off-diagonal elements (right) of TbPc$_2$ thin films on SiO$_2$/Si with different thicknesses. The values of the components of the dielectric tensor are normalized to a magnetic field of 1 T.
Fig. S6. Out-of-plane components of the dielectric tensor of five TbPc$_2$ films on SiO$_2$/Si.
Fig. S7. Complex refractive index of TbPc$_2$ films on PTCDA/SiO$_2$/Si.
Fig. S8. Complex refractive index of TbPc$_2$ films on Co/SiO$_2$/Si.
Table S1. Summary of the obtained Landé factors and ligand field (LF) parameters from fitting of the hysteresis loops at 1.8 K using the Hamiltonians below. For comparison the parameters for simulation from Ishikawa et al. [Ishikawa, N.; Sugita, M.; Okubo, T.; Tanaka, N.; Iino, T.; Kaizu, Y. Inorg. Chem., 2003, 42, 2440-2446] are shown. The Stevens coefficients used for the Tb$^{3+}$ ion are $\alpha = -1/99$, $\beta = 2/16335$ and $\gamma = -1/891891$. [Stevens, K.W.H. Proc. Phys. Soc. A, 1952, 65, 209] For having reasonable LF parameters it was necessary to include the Landé factor as a free parameter in the fitting procedure. Remarkable are the much higher LF parameters in the TbPc$_2$ film on silicon compared to the powder measurement and the simulation. This might be related to lower inter-molecular interaction in the film, compared to the powder.

\[
\vec{H}_{TbPc_2} = \vec{H}_{Zeeman} + \vec{H}_{lf}
\]

\[
\vec{H}_{Zeeman} = g_J \mu_B \mathbf{J} \cdot \mathbf{H}
\]

\[
\vec{H}_{lf} = A_2^0 < r^2 > + A_4^0 < r^4 > + A_6^0 < r^6 > + \gamma O_6^0
\]

<table>
<thead>
<tr>
<th></th>
<th>Simulation</th>
<th>43 nm TbPc$_2$/Si (Fit)</th>
<th>TbPc$_2$ Powder (Fit)</th>
<th>37 nm TbPc$_2$/PTCDA (Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_J</td>
<td>1.50</td>
<td>1.58</td>
<td>1.40</td>
<td>0.86</td>
</tr>
<tr>
<td>A_2^0 / cm$^{-1}$</td>
<td>415</td>
<td>849</td>
<td>153</td>
<td>849</td>
</tr>
<tr>
<td>A_4^0 / cm$^{-1}$</td>
<td>-230</td>
<td>175</td>
<td>59</td>
<td>175</td>
</tr>
<tr>
<td>A_6^0 / cm$^{-1}$</td>
<td>35</td>
<td>49</td>
<td>101</td>
<td>49</td>
</tr>
</tbody>
</table>