Supporting Information

Impact of Atomic Layer Deposited SiO$_2$ Passivation for High-k Ta$_{1-x}$Zr$_x$O on InP Substrate

Chandreswar Mahataa, Il-Kwon Oha, Chang Mo Yoona, Chang Wan Leea, Jungmok Seoa,
Hassan Algadia, Mi-Hyang Sheenb, Young-Woon Kimb, Hyungjun Kima, Taeyoon Leea*

aNanobio Device Laboratory, School of Electrical and Electronic Engineering,
Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Republic of Korea

bDepartment of Materials Science and Engineering, Seoul National University,
Gwanak-Gu, Seoul 151-744, Korea

* Corresponding author:

Tel: +82-2-2123-5767

Fax: +82-2-313-2879

e-mail address: taeyoon.lee@yonsei.ac.kr
CET and k_{eff} calculation

Capacitance equivalent thickness (CET) extracted

\[
CET = \varepsilon_0 k_{\text{SiO}_2} / C_{\text{ox}} \\
= 8.854 \times 10^{-12} \text{F/m} \times 3.9 \times 7.85 \times 10^{-9} \text{m}^2 / 1.5 \times 10^{-10} \text{F} \\
= 1.8 \times 10^{-9} \text{m}
\]

from the low frequency $f_{100\text{Hz}}$ (100Hz, as it is close the oxide capacitance) C–V curve was 1.8 nm for the Ta$_{1-x}$Zr$_x$O on InP. Here k_{SiO_2} is relative permittivity of SiO$_2$, C_{ox} is accumulation capacitance per unit area, and ε_0 is the free space permittivity [1].

The equivalent $k_{\text{Ta}_1\cdot\text{Zr}_x\text{O}}$ value can was calculated as,

\[
k_{\text{Ta}_1\cdot\text{Zr}_x\text{O}} = k_{\text{SiO}_2} T_{\text{ox}} / CET \\
= 3.9 \times 9.2 \text{nm} / 1.8 \text{nm} \\
= 19.93
\]

where T_{ox} is the total physical thickness of the dielectric layer can be attained from TEM image.

From above relation we have achieved high equivalent dielectric constant value of ~20 of Ta$_{1-x}$Zr$_x$O nanolaminated dielectric.
Figure S1. Capacitance-voltage characteristics of (a) TaN/Ta$_{1-x}$Zr$_x$O/n-InP MOS capacitor, and (b) TaN/Ta$_{1-x}$Zr$_x$O/ SiO$_2$/n-InP MOS capacitor under as-deposited and annealed (PDA) conditions.

The conductance method has been widely used to calculate accurately reliable D_{it} estimated around midgap, as the trap response is strongly temperature dependent. Another criteria for accurate measures of the D_{it} can be obtained for high-k/III-V interfaces provided that the D_{it} is sufficiently low, for $C_{ox} > qD_{it}$, where C_{ox} is the accumulation capacitance density of the high-k oxide and q the electronic charge[2]. The movement of conductance peaks in the contour maps given in the manuscript is a sign of the conduction band bending efficiency as a
function of applied gate bias [3]. Interface trap density (D_{it}) as a function of trap energy level (ΔE) can be calculated with the help of following equations:

$$D_{it} = 2.5 \frac{(G_p / \omega)_{max}}{Aq}$$ \hspace{1cm} (3)

$$f = \frac{1}{2\pi \tau} = \frac{\nu \sigma N}{2\pi} \exp \left[\frac{-\Delta E}{k_B T} \right]$$ \hspace{1cm} (4)

where q is the electronic charge, A is the area of the capacitor, $(G_p/\omega)_{max}$ is maximum peak of conductance map, f is the applied frequency, where τ is the characteristic trapping time, σ is the trap capture cross section, ν is the carrier thermal velocity, and N is the density of state in the conduction band. The conductance peak shift indicates that the n-InP surface potential responds efficiently to the gate bias when the Fermi level is located between conduction band edge and midgap.

The D_{it} values in upper half bandgap were extracted from the n-type TaN/Ta$_{1-x}$Zr$_x$O/SiO$_2$/InP devices. The D_{it} value near the conduction band was at 0.27 eV was 4×10^{12} cm$^{-2}$eV$^{-1}$. In case of TaN/Ta$_{1-x}$Zr$_x$O/InP interface trap density calculation results show that $qD_{it} > C_{ox}$. In this case this conductance method becomes not sensitive to extract D_{it}, and the calculated values could be overestimated by an order of magnitude [3]. So for without SiO$_2$ passivation sample we could not calculate the D_{it} effectively. We also compared the D_{it} characteristics with other published recent data and has been described in Figure S2(b).

![Figure S2](image-url)
Figure S2. Interface trap distribution of TaN/Ta$_{1-x}$Zr$_x$O/SiO$_2$/n-InP MOS capacitor in the InP band gap obtained from the conductance measurement. (b) Comparison of D_{it} with different published data recently.
We have calculated the apparent doping profile from high frequency capacitance-voltage (C_{HF}–V_g) characteristics. The depletion depth (X_{dHF}) and apparent doping (N_{appHF}) as a function of applied gate potential (V_g) are expressed as follows [10]:

$$X_{dHF}(V_g) = \varepsilon_{InP} \left(\frac{1}{C_{HF}(V_g)} - \frac{1}{C_{OX}} \right)$$ \hspace{1cm} (5)$$

$$\frac{1}{N_{appHF}(V_g)} = \left(\frac{q}{2} \right) \left(\frac{\delta(1/C_{HF}^2(V_g))}{\delta V_g} \right)$$ \hspace{1cm} (6)$$

where ε_{InP} is the InP permittivity, C_{ox} is the gate oxide capacitance/area, q is the electronic charge.

Figure S3. Apparent doping profiles for the n-InP layer from MOS capacitor high frequency C–V characteristics.

Our calculated apparent substrate doping was calculated to be approximately 1.5×10^{17} cm$^{-3}$, which very close to the value supplied from the manufacturing semiconductor company.

References:

