Electronic Supplementary Information (ESI)

CO catalytic oxidation on Al-doped graphene-like ZnO monolayer sheets:

* a first-principles study

Dongwei Ma1,*, Qinggao Wang1, Tingxian Li1, Zhenjie Tang1, Gui Yang1, Chaozheng He2,*, and Zhansheng Lu3

1School of Physics, Anyang Normal University, Anyang 455000, China

2Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061, China

3College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China

*Corresponding author. E-mail: dwmachina@126.com (Dongwei Ma).
*Corresponding author. E-mail: hecz2013@nynu.edu.cn (Chaozheng He).
Fig. S1. Several atomic configurations for the O$_2$ ((a), (b), and (c)) and CO ((d) and (e)) adsorption on the pristine g-ZnO monolayer sheet. The nearest distance between the adsorbed molecules and the sheet, and the adsorption energies are given.

(a) $E_a = 0.02$ eV
\[d = 3.23 \text{ Å}\]

(b) $E_a = 0.02$ eV
\[d = 3.08 \text{ Å}\]

(c) $E_a = 0.02$ eV
\[d = 2.97 \text{ Å}\]

(d) $E_a = 0.03$ eV
\[d = 2.91 \text{ Å}\]

(e) $E_a = 0.01$ eV
\[d = 3.22 \text{ Å}\]

Fig. S2. Atomic configurations of two typical states for the O$_2$ adsorption at the sites away from the doped Al atom on the Al-g-ZnO monolayer sheet. The adsorption energies are given.

(a) $E_a = 0.86$ eV
\[2.12 \text{ Å}, 1.39 \text{ Å}, 2.13 \text{ Å}\]

(b) $E_a = 1.15$ eV
\[2.14 \text{ Å}, 1.39 \text{ Å}, 2.09 \text{ Å}\]
Fig. S3. The atomic configurations and adsorption energies for the states of O$_2$ dissociative adsorption on the Al-g-ZnO monolayer sheet. The O atoms from the dissociated O$_2$ are denoted as blue spheres. The adsorption energies were calculated with respect to the free O$_2$ molecule and the bare Al-g-ZnO sheet.

<table>
<thead>
<tr>
<th>State</th>
<th>Adsorption Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>$E_a = 0.13$ eV</td>
</tr>
<tr>
<td>(b)</td>
<td>$E_a = 0.24$ eV</td>
</tr>
<tr>
<td>(c)</td>
<td>$E_a = 0.15$ eV</td>
</tr>
<tr>
<td>(d)</td>
<td>$E_a = 0.04$ eV</td>
</tr>
<tr>
<td>(e)</td>
<td>$E_a = 0.11$ eV</td>
</tr>
<tr>
<td>(f)</td>
<td>$E_a = 0.23$ eV</td>
</tr>
</tbody>
</table>

Fig. S4. Atomic configuration of the considered initial (left) and fully optimized (right) states for the coadsorption of O$_2$ and CO molecules on the Al-g-ZnO monolayer sheet.
Fig. S5. Atomic configuration of the carbonate-like MS state and the state of CO$_2$ physisorbed on the atomic O-covered Al-g-ZnO monolayer sheet are shown in (a) and (b), respectively. The former is more stable than the latter by 1.48 eV.