Supporting Information

Electrical and thermal transport properties of spark plasma sintered n-type $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$ alloys: combined effect of point defect and Se content

Yu Pan, Tian-Ran Wei, Chao-Feng Wu and Jing-Feng Li*

State Key Laboratory of New Ceramics and Fine Processing,
School of Materials Science and Engineering, Tsinghua University,
Beijing 100084, China.

E-mail: jingfeng@mail.tsinghua.edu.cn;
Fax: +86-62771160;
Tel: +86-10-62784845.
Fig. S1 Specific heat of the Bi$_2$Te$_{2-x}$Se$_x$ samples. The shadow parts are the adopted values and other lines are reference values for comparison.

Fig. S2 Thermal diffusivity coefficient of the samples Bi$_2$Te$_{3-x}$Se$_x$ (x=0, 0.3, 0.5, 0.8 and 1).
Fig. S3 Temperature dependence of electrical and thermal transport properties of the re-prepared sample Bi$_2$Te$_{2.2}$Se$_{0.8}$ (named \(x=0.8\) repeated in the manuscript) from 323K to 573K. This high temperature measurement up to 573K proves that the maximum ZT value is limited at 473K. In addition, the uptrend of the thermal conductivity at ~473K demonstrates the onset temperature of the bipolar effect.

Fig. S4 EPMA mapping of main elements on polished Bi$_2$Te$_{2.2}$Se$_{0.8}$ surface (a) Bi, (b) Te, (c) Se and quantitative analysis results.
Fig. S5 Comparison of the power factors of $\text{Bi}_2\text{Te}_{2.2}\text{Se}_{0.8}$ to adjacent composition $\text{Bi}_2\text{Te}_{2.3}\text{Se}_{0.7}$ and $\text{Bi}_2\text{Te}_2\text{Se}_1$.

<table>
<thead>
<tr>
<th>Se contents x</th>
<th>0</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorenz number L $(10^{-8}\text{ V}^2\text{K}^{-2})$</td>
<td>1.77</td>
<td>1.72</td>
<td>1.71</td>
<td>1.69</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

1.85 1.69 1.68 1.66 1.63

Fig. S6 Calculated Lorenz number
Fig. S7 Comparison of the ZT of Bi$_2$Te$_{2.2}$Se$_{0.8}$ with thermal conductivity measured perpendicular and parallel to the measuring direction of electrical conductivity.