Supporting Information

Star-Shaped Triphenylene Discotic Liquid Crystalline Oligomers and their Hydrogen-Bonded Supramolecular Complexes with Simple Acids

Ke-Qing Zhao, Xiao-Yan Bai, Bo Xiao, Yue Gao, Ping Hu, Bi-Qin Wang, Qing-Dao Zeng, Chen Wang, Benoît Heinrich, Bertrand Donnio

Table of Content

1 1H NMR spectra: Figures S1-S20 (1a-d; 2a-d; 3, 3a; 4a-d; 5a-f) pages 2-11

2 13C NMR spectra: Figures S21-S24 (4a-d) pages 12-13

3 IR: Figures S25-S33 (4d, hexanoic acid, 5a, 5b; benzoic acid, 5c, 5d; 4-hexoxybenzoic acid, 5e) pages 14-18

4 DSC: Figures S34-S39 (1b, 1d; 2b, 2d; 4c, 4d) page 19

5 SAXS: Figures S40-S42 (5a-f) page 20

6 SAXS in isotropic liquid: Figure S43 (4a,c,d) page 21
1H NMR

Figure S1: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 1a

Figure S2: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 1b
Figure S3: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 1c

Figure S4: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 1d
Figure S5: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 2a

Figure S6: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 2b
Figure S7: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 2c

Figure S8: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 2d
Figure S9: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 3

Figure S10: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 3a
Figure S11: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 4a, n = 3

Figure S12: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 4b, n = 4
Figure S13: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 4c, n = 6

Figure S14: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 4d, n = 10
Figure S15: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 5a

Figure S16: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 5b
Figure S17: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 5c

Figure S18: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 5d
Figure S19: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 5e

Figure S20: 1H NMR (CDCl$_3$, 400 MHz) spectrum of 5f
2. 13C NMR

Figure S21: 13C NMR (CDCl$_3$, 100 MHz) spectrum of 4a, $n = 3$

Figure S22: 13C NMR (CDCl$_3$, 100 MHz) spectrum of 4b, $n = 4$
Figure S23: 13C NMR (CDCl$_3$, 100 MHz) spectrum of 4c, n = 6

Figure S24: 13C NMR (CDCl$_3$, 100 MHz) spectrum of 4d, n = 10
3. IR

Figure S25: IR spectrum of 4d, n = 10

Figure S26: IR spectrum of hexanoic acid
Figure S27: IR spectrum of 5a

Figure S28: IR spectrum of 5b
Figure S29: IR spectrum of benzoic acid

Figure S30: IR spectrum of 5c
Figure S31: IR spectrum of 5d

Figure S32: IR spectrum of 4-hexyloxybenzoic acid
Figure S33: IR spectrum of 5f
4. DSC

Figure S34: DSC traces of 1b

Figure S35: DSC traces of 1d

Figure S36: DSC traces of 2b

Figure S37: DSC traces of 2d

Figure S38: DSC traces of 4c, n = 6

Figure S39: DSC traces of 4d, n = 10
5. SAXS

Figure S40: SAXS patterns of at variable temperatures of 5a (A) and 5b (B).

Figure S41: SAXS patterns of at variable temperatures of 5c (A) and 5d (B).

Figure S42: SAXS patterns of at variable temperatures of 5e (A) and 5f (B).
Figure S43: SAXS patterns in the isotropic state of 4a at 130°C, 4c at 75°C and 4d at 70°C, compared to the room-temperature hexagonal columnar phase of 4a; (11) and h_π are respectively the most intense reflection of the columnar lattice and the scattering signal from π-stacked triphenylene units; D_{mes}, h_{mes} and h_{ch} come from piling and lateral distances between mesogens, and from lateral distances between chains; h_{TTAB} and h_{TP} correspond to piling distances between tris-triazolyl-benzene units (TTAB) and loosely piled triphenylene units (TP); D_{mol} stands for the lateral distance between piled molecules, thus between TTAB separated by TP.