Supplemental Information for:

Nanoporous Gyroid Metal Oxides with Controlled Thickness and Composition by Atomic Layer Deposition from Block Copolymer Templates

Wei-Chun Maa, Wei-Shiang Huanga, Ching-Shun Kub* and Rong-Ming Hoa*

a Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.
b National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, R.O.C.
* To whom correspondence should be addressed: rmho@mx.nthu.edu.tw and csku@nsrrc.org.tw
Fig. S1

Cross-sectional view of FESEM micrograph of the nanoporous gyroid-forming bulk-film template.
Fig. S2

Deposition of ZnO by ALD into the gyroid templates with 3 seconds exposure time.
Fig. S3

TEM micrographs of PS/ZnO gyroid nanohybrids without staining from templated ALD with: (a) 40 ALD cycles; (b) 80 ALD cycles.
Fig. S4

Measured and fitted X-ray reflectivity profiles of the PS/ZnO gyroid nanohybrids fabricated from templated ALD with different cycle numbers.
Fig. S5

Cross-sectional view of the SEM micrograph of Al₂O₃@ZnO core-shell structure. The insets show the enlarged images of the locations from the top to the bottom. The average film thickness is approximately 5 μm.