Supplementary Information

Dielectric investigation on high-k Yttrium Copper Titanate thin films

Anna Grazia Monteduroa, b, Zoobia Ameera, b, Maurizio Martinoa, Anna Paola Caricatoa, Vittorianna Tascob, Indira Chaitanya Lekshmic, ◊, Ross Rinaldia, c, Abhijit Hazarikad, Debraj Choudhuryd, e, D. D. Sarmad, f, *, Giuseppe Maruccioa, b, *

aDepartment Of Mathematics and Physics, University Of Salento, Via per Arnesano, 73100, Lecce, Italy
bCNR NANOTEC - Istituto di Nanotecnologia, Via per Arnesano, 73100 Lecce, Italy
cCNR NANO - Istituto Nanoscienze, Via per Arnesano, 73100 Lecce, Italy
dSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
eDepartment of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
fCouncil of Scientific and Industrial Research - Network of Institutes for Solar Energy (CSIR-NISE), New Delhi, India

◊Present address: Dept of Chemistry, CMR Institute of Technology, 132, AECS layout, IT Park Road, Bangalore 560037.

*corresponding authors: giuseppe.maruccio@unisalento.it, sarma@sscu.iisc.ernet.in
Fig. S1 Frequency dependences of real (ε') and imaginary part (ε'') of the complex permittivity in the frequency range 100Hz-1MHz for two YCTO films deposited at 0.1 Pa oxygen pressure with thickness $t_2=150\text{nm}$ and $t_3=50\text{nm}$.
$Y|_{t^3}^{0.05}$ film modeled by using the UDR and modified Cole-Cole models. The UDR model is able to describe only the high frequency behaviour of the complex permittivity, while the modified Cole-Cole model fits the data over the whole frequency range.