Supplementary Information

The morphology and structure of vanadyl phthalocyanine thin films on lithium niobate single crystals

Alexandra J. Ramadan¹*, Luke A. Rochford², Jonathan Moffat³, Chris Mulcahy³, Mary P. Ryan¹, Tim S. Jones², Sandrine Heutz¹*

1. Dr A. J. Ramadan, Prof. Mary P. Ryan, Dr. S. Heutz, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
2. Dr. L. A. Rochford, Prof. T. S. Jones, Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
3. Dr. J. Moffat, Dr. C. Mulcahy, Asylum Research an Oxford Instruments company, Halifax Road, High Wycombe, Buckinghamshire, HP12 3SE

Corresponding author: ar707@ic.ac.uk, s.heutz@ic.ac.uk
The roughness values (RMS roughness) described in the text of the paper are calculated using the Asylum Research MFP-3D software. The reported values have been referenced to equal surface area and calculated using the following equation:

\[R_q = \sqrt{\frac{1}{L} \int_0^L |Z^2(x)| \, dx} \]

Figure S1- AFM topography images of blank lithium niobate surfaces with and without annealing.
Figure S2- AFM topography image of annealed (0001) lithium niobate surface. The black line corresponds to the cross-section height profile.

Figure S3- AFM topography image of (a) 50nm VOPc on unannealed (0001) lithium niobate and (b) 50nm VOPc on annealed (0001) lithium niobate
Figure S4- Enlarged XRD plot of Figure 3 showing diffraction from 50nm thick film of VOPc on various lithium niobate surfaces.