Electronic Supporting Information

Mapping the Configuration Dependence of
Electronic Coupling in Organic Semiconductors

Karl J. Thorley and Chad Risko*

Department of Chemistry &
Center for Applied Energy Research
University of Kentucky
Lexington, Kentucky 40506

Corresponding author: chad.risko@uky.edu
**Figure S1.** Comparison of $V_{RP}$ for different acene lengths as a function of rotation angle theta. Naphthalene (blue), anthracene (green), tetracene (red) and pentacene (black).

**Figure S2.** Effect of basis set on $V_{RP}$ for a pair of naphthalene molecules with varying rotation angle theta. 6-31G (blue), 6-31G(d) (green), 6-31+G(d) (red) and 6-311G (black).
Figure S3. Effect of the basis set on $V_{RP}$ for a naphthalene pair at a fixed rotation angle (40° (left) and 80° (right)) with increasing intermolecular distance.

Figure S4. Normalized evolution of $V_{RP}$ with molecular rotation for a naphthalene dimer with different functionals.
Figure S5. Comparison of $V_{RP}$ (black, 0.02 eV) and $S_{RP}$ (red, 0.005 a.u.) contours during molecular rotation and short axis displacement in a naphthalene dimer.

Figure S6. B3LYP-D3/6-31G(d) calculated interaction energies for dimers during molecular rotation and short axis displacement in a naphthalene dimer. Interaction energies were calculated as the difference between the energy of the dimer and the energy of two isolated monomers.