Supporting Information

Toward n-type analogues to poly(3-alkylthiophene)s: Impact of side-chain variation on bulk-morphology and electron transport characteristics of head-to-tail regioregular poly(4-alkylthiazole)s

Jakob Jäger, Nadine Tchamba Yimga, Marta Urdanpilleta, Elizabeth von Hauff*, and Frank Pammer*

Figure S1. Thermogravimetric analyses a) PTzTIB, b) PTzTNB, and c) PTzTHX. Scan rate 15 °C/min. 2
Figure S2. UV-PES ion current-curve for PTzTHX. Vertical axis: arbitrary unit. Horizontal axis: eV. 2
Figure S3a/b. GIXD-refractogramms of PTzTHX and PTzTNB. ... 3
Figure S4: Architecture of the electron-only and hole-only based devices on PTzTNB/PTzTHX. 4
Figure S5: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the electron-only devices based on PTzTHX, with the film measured as-spun, and annealed at 185°C for 10 minutes. 4
Figure S6: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the hole-only devices based on PTzTHX, with the film measured as-spun, and annealed at 185°C for 10 minutes. 5
Figure S7: Semi-logarithmic plots of J-V (left) and log (J)-log (V) (right) curves of the electron-only and hole-only devices based on PTzTHX, measured as-spun. ... 5
Figure S8: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the electron-only and hole-only devices based on PTzTNB, with the film measured as-spun, and annealed at 185°C for 10 minutes. 6
Figure S9: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the hole-only devices based on PTzTNB, with film annealed at 185°C for 10 minutes. 6
Figure S10: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the electron-only devices based on PTzTNB, with the film measured as-spun, and annealed at 150°C for 30 minutes. 7
Figure S11: Semi-logarithmic plots of J-V (left) and log (J)-log (V) (right) curves of the electron-only and hole-only based devices on PTzTNB, measured as-spun. ... 7
Figure S12: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the electron-only and hole-only based devices on PTzTNB, with film annealed at 150°C for 30 minutes. 8
Figure S13. 1H NMR-spectrum of 5-bromo-2-chloro-4-(triisobutylsilyloxymethyl)-thiazole (2a). 9
Figure S14. 13C NMR-spectrum of 5-bromo-2-chloro-(triisobutylsilyloxymethyl)-thiazole (2a). 10
Figure S15. 1H NMR-spectrum of 5-bromo-2-chloro-4-(tri(n-butyl)silyloxymethyl)-thiazole (2b). 10
Figure S16. 13C NMR-spectrum of 5-bromo-2-chloro-(tri(n-butyl)silyloxymethyl)-thiazole (2b). 11
Figure S17. 1H NMR-spectrum of 5-bromo-2-chloro-4-(tri(n-hexyl)silyloxymethyl)-thiazole (2c). 11
Figure S18. 13C NMR-spectrum of 5-bromo-2-chloro-(tri(n-hexyl)silyloxymethyl)-thiazole (2c). 12
Figure S19. 1H NMR-spectrum of PTzTIB in 1,2-dichlorobenzene-d₄ at 100 °C. ... 12
Figure S20. 1H NMR-spectrum of PTzTNB in CDCl₃ at 20 °C. ... 13
Figure S21. 1H NMR-spectrum of PTzTHX in CDCl₃ at 20 °C. ... 13
Figure S22. 13C NMR-spectrum of PTzTHX in CDCl₃. ... 14
Figure S1. Thermogravimetric analyses a) PTzTIB, b) PTzTNB, and c) PTzTHX. Scan rate 15 °C/min.

Figure S2. UV-PES ion current-curve for PTzTHX. Vertical axis: arbitrary unit. Horizontal axis: eV.
Figure S3a. Comparison of GIXD-refractogramms of different batches of PTzTHX. The broad peak between 5 and 15° stems from the glass substrate. See also Figure S3b.

Figure S3b. Background corrected GIXD pattern of PTzTNB.
Figure S4: Architecture of the electron-only and hole-only based devices on PTzTNB/PTzTHX.

Figure S5: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the electron-only devices based on PTzTHX, with the film measured as-spun, and annealed at 185°C for 10 minutes.
Figure S6: Semi-logarithmic plots of J-V (left) and log (J)-log (V) (right) curves of the hole-only devices based on PTzTHX, with the film measured as-spun, and annealed at 185°C for 10 minutes.

Figure S7: Semi-logarithmic plots of J-V (left) and log (J)-log (V) (right) curves of the electron-only and hole-only devices based on PTzTHX, measured as-spun.
Figure S8: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the electron-only and hole-only devices based on PTzTHX, with film annealed at 185°C for 10 minutes.

Figure S9: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the hole-only devices based on PTzTNB, with the film measured as-spun, and annealed at 150°C for 30 minutes.
Figure S10: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the electron-only devices based on PTzTNB, with the film measured as-spun, and annealed at 150°C for 30 minutes.

Figure S11: Semi-logarithmic plots of J-V (left) and log (J)-log(V) (right) curves of the electron-only and hole-only based devices on PTzTNB, measured as-spun.
Figure S12: Semi-logarithmic plots of J-V (left) and log (J)-log (V) (right) curves of the electron-only and hole-only based devices on PTzTNB, with film annealed at 150°C for 30 minutes.
Supplementary Analytical Data

Figure S13. 1H NMR-spectrum of 5-bromo-2-chloro-4-(triisobutylsilyloxyethyl)-thiazole (2a). For 1H NMR data of rr-PTzs recorded under similar conditions see: F. Pammer, J. Jäger, B. Rudolf, Y. Sun, Macromolecules, 2014, 47, 5904-5912.
Figure S14. 13C NMR-spectrum of 5-bromo-2-chloro-(triisobutylsilyloxymethyl)-thiazole (2a).

Figure S15. 1H NMR-spectrum of 5-bromo-2-chloro-4-(tri(n-butyl)silyloxymethyl)-thiazole (2b).
Figure S16. 13C NMR-spectrum of 5-bromo-2-chloro-(tri(n-butyl)silyloxy)methyl)-thiazole (2b).

Figure S17. 1H NMR-spectrum of 5-bromo-2-chloro-4-(tri(n-hexyl)silyloxy)methyl)-thiazole (2c).
Figure S18. 13C NMR-spectrum of 5-bromo-2-chloro-(tri(n-hexyl)silyloxy)methyl)-thiazole (2c).

Figure S19. 1H NMR-spectrum of PTzTIB in 1,2-dichlorobenzene-d$_4$ at 100 ºC.
Figure S20. 1H NMR-spectrum of PTzTNB in CDCl$_3$ at 20 °C.

Figure S21. 1H NMR-spectrum of PTzTHX in CDCl$_3$ at 20 °C.
Figure S22. 13C NMR-spectrum of PTzTHX in CDCl$_3$.