Supporting Information

Ultrabroad Near-Infrared Photoluminescence from Bismuth Doped CsPbI₃: Polaronic Defects vs. Bismuth Active Centers

Yang Zhou, a Dan-Dan Zhou, a Bo-Mei Liu, a Li-Na Li, b Zi-Jun Yong, a Hao Xing, a Yong-Zheng Fang, c Jing-Shan Hou c and Hong-Tao Sun*a

a College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China

b Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

c School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Corresponding Author

*Email: timothyhsun@gmail.com,
Figure S1. (a) Normalized PL spectra of Bi doped CsPbI$_3$. (b) PLE spectra of the PbI0.0005 and PbI0.001 samples.

Figure S2. Normalized PL spectra of the PbI0.0005 (a) and PbI0.0025 (b) samples under the excitation of 385 and 445 nm.
Figure S3. Normalized PL spectra of Bi and Te doped samples under the excitation of 445 nm.

Figure S4. Normalized XPS spectra of the pristine and PbI0.0025 samples, and the peaks in the range of 134–149 eV are assigned to Pb (4f7/2, 4f5/2).
Figure S5. XRD pattern of Bi doped CsPbI$_3$ nanowires attached on the silica substrate.

Note that the sample was sealed in a transparent hermetic dome (A100B33 Bruker AXS), thus resulting in rather low signal/noise ratio.

Table S1. The fitted lifetimes of Bi doped CsPbI$_3$ by a mono- or multi-exponential function.

<table>
<thead>
<tr>
<th>Sample</th>
<th>A_1</th>
<th>t_1 (μs)</th>
<th>A_2</th>
<th>t_2 (μs)</th>
<th>A_3</th>
<th>t_3 (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbI0.0005</td>
<td></td>
<td>20.19513</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbI0.001</td>
<td></td>
<td>21.73614</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbI0.0025</td>
<td>0.3688</td>
<td>20.79324</td>
<td>0.55646</td>
<td>14.36672</td>
<td>0.22469</td>
<td>2.45833</td>
</tr>
<tr>
<td>PbI0.005</td>
<td>0.57223</td>
<td>16.84443</td>
<td>0.37567</td>
<td>5.96951</td>
<td>0.41678</td>
<td>1.40545</td>
</tr>
<tr>
<td>PbI0.0075</td>
<td>0.41645</td>
<td>15.65968</td>
<td>0.56316</td>
<td>5.38636</td>
<td>1.23278</td>
<td>0.65076</td>
</tr>
<tr>
<td>Te doped CsPbI$_3$ (Te/Pb 0.0025)</td>
<td>0.07127</td>
<td>37.39487</td>
<td>0.93314</td>
<td>17.92716</td>
<td>0.71832</td>
<td>0.52264</td>
</tr>
</tbody>
</table>