SUPPORTING INFORMATION SECTION

Oligonucleotide-Functionalized Carbon Nanotube Sensor for Sensitive Detection of Mercury in Saliva

Dawit N. Wordofa, a Pankaj Ramnani, a Thien-Toan Tran b and Ashok Mulchandani* a

a Department of Chemical and Environmental Engineering, b Department of Bioengineering, University of California, Riverside, California 92521, USA.

Detection of Hg^{2+} in buffer

The response of DNA-functionalized SWNTs biosensor was tested against increasing concentrations of Hg^{2+} (1 nM to 1000 nM) in PB solution (10 mM, pH 7.4). Fig. S2 shows the calibration curve, normalized change in resistance \[(R-R_o)/R_o\], where \(R\) is the resistance after incubation with Hg^{2+} and \(R_o\) is the resistance after hybridization between polyT and polyA] as a function of log concentration of Hg^{2+} (in nM). A linear response was observed for Hg^{2+} concentrations varying from 1 nM to 1000 nM and a linear regression equation of \(y = -0.2164x - 0.2549 (R^2 = 0.9145)\) was obtained.

Fig. S1 Calibration curve for detection of Hg^{2+} in PB. Each data point is an average of measurements from 8 independent sensors and error bars represent ±1 standard deviation.

S1
Fig. S2 Control experiment showing response of polyT functionalized SWNTs incubated with increasing concentrations of CH$_3$Hg$^+$ in absence of polyA. Each data point is an average of measurements from 5 independent sensors and error bars represent ±1 standard deviation.

Fig. S3 Bar graphs showing the response of biosensor to a blank sample (phosphate buffer, 10 mM, pH 7.4), simulated human saliva sample in the absence of Hg$^{2+}$ ions and saliva sample spiked with 10 nm of Hg$^{2+}$ ions. Each data point is an average of measurements from 5 independent sensors and error bars represent ±1 standard deviation.
Table S1. Effect of mercapto-1-hexanol blocking on non-specific binding of CH$_3$Hg$^+$

<table>
<thead>
<tr>
<th>Response to 500 nm CH$_3$Hg$^+$</th>
<th>$\Delta R/R_0$ (average of 4 devices)</th>
</tr>
</thead>
<tbody>
<tr>
<td>in absence of MCH blocking</td>
<td>0.81 ± 0.24</td>
</tr>
<tr>
<td>with MCH blocking</td>
<td>0.08 ± 0.10</td>
</tr>
</tbody>
</table>