A Rapid Approach for Fabricating Functionalized Plates for Sample Purification and Mass Spectrometry Analysis: The Application of Hydrophobic Plate for Peptide/Protein Purification and Hydrophilic Plate for Glycopeptide Enrichment

Hsin-Yi Liao,1 Fuu-Jen Tsai,2 Chien-Chen Lai,3 Mei-Chun Tseng,4 Liang-Wei Chiou,5 Chao-Jung Chen,1,5,*

1Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan

2Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan

3Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan

4Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan

5Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan

*Corresponding Author

Chao-Jung Chen, phone: 886-4-22052121 ext. 2761, e-mail: cjchen@mail.cmu.edu, fax: 886-4-22037690
Supporting Information

a. Sample preparation by a C18 tip

A C18 tip (ZipTip, Millipore, USA) was prewetted with 100% ACN by aspirate and dispense step three times. The tip was then equilibrated by washing it twice with 0.1% TFA. A 10 μL volume of sample solution was aspirated into the preequilibrated tip, followed by washing with 10 μL of 0.1% TFA three times. A 10 μL volume of elution solution (80% ACN/0.1% TFA) was used to elute sample two times. The eluted sample solution was dried in a centrifugal concentrator (miVac Duo Concentrator; Genevac, NY, USA) and re-dissolved with 3 μL of 80% ACN/0.1% TFA solution, followed by a MALDI-TOF analysis.

b. High density lipoprotein (HDL) isolation from plasma

HDL was isolated from plasma, with a density between 1.063 and 1.21 g mL⁻¹, using ultracentrifugation in KBr-density gradient (Optima™ L-90K, Beckman Coulter, USA). All the reagents were purchased from Sigma. The cocktail of protease inhibitor (Roche), 1% Penicillin-Streptomycin-Neomycin mix (PSN, GIBCO), sodium azide (0.02% wt/vol), 10 mM Na₄P₂O₇, 1 mM Na₃VO₄, and 10 mM β-glycerophosphate was added immediately after the HDL collection to protect the plasma from in vitro oxidation and degradation. Purified HDLs were directly analyzed by on-target MALDI-TOF or dialyzed against degassed buffer A (20 mM Tris-HCl and 0.5 mM EDTA, pH 8.0) at 4 °C with three buffer A (3 L) changes in 24 h, followed by a MALDI-TOF analysis.

c. Protein digestion

HRP and BSA were individually dissolved in 50 mM of ammonium bicarbonate (ABC) and heated to 90 °C for 20 min. The denatured proteins were reduced with 10 mM DTT for 20 min at 56 °C, followed by the addition of 55 mM of IAA for 30 min, in the dark at 25 °C. Trypsin was added to the protein solution at an enzyme-to-substrate ratio of 1:50 (w/w) for 12 h at 37 °C.
For Bv-2 cell lysate containing 0.8M urea/0.005%SDS or 0.8M urea/0.05%SDS, the lysate proteins were dissolved in 50 mM of ammonium bicarbonate (ABC and heated to 37 °C for 60 min. The denatured proteins were reduced with 10 mM DTT for 20 min at 56 °C, followed by the addition of 50 mM of IAA for 60 min, in the dark at 25 °C. Trypsin was added to the protein solution at an enzyme-to-substrate ratio of 1:10 (w/w) for 12 h at 37 °C.
Figure S-1: Representative MALDI–TOF spectrum from 5 fm BSA digests with purification from (a) CP plate (b) C18 tip and (c) C18 magnetic nanoparticles. The S/N value was the average of four replicated measurements.
Figure S-2: Representative MALDI–TOF spectrum of the eluted BSA sample solution from CP plate. 5 fm BSA digests, 0.1% SDS sample solution was deposited on CP plate with different sample incubation time of (a) 1 min, (b) 6 min, and (c) 10 min.
Figure S-3: Representative MALDI–TOF spectrum from 5 fm BSA digests with (a) the addition of 200 mM urea after (b) CP plate and (c) C18 Tip sample preparation. The PMF score was the average value from 5 replicated measurements.
Figure S-4: Sample capacity evaluation of the CP-plate with ~2.8 mm i.d. spot arrays. The peptide (m/z 1479.8) purified from 0.05, 0.01, 0.5, 1, 5, 10, 50, and 100 µg of BSA digests using the CP-plate was mixed separately with 5 fm, 10 fm, 50 fm, 100 fm, 500 fm, 1 pm, 5 pm, and 10 pmol of ACTH peptide (as an internal standard, m/z 2465), and then subjected to MALDI-TOF analysis on a PDMS-coated plate. Y-axis: the peak ratio of the peptide peak (m/z 1479.8) to its corresponding ACTH peak signal (m/z 2465.2). X-axis: the loading amount of BSA digests. Each concentration was performed with three measurements with different C18 spots.
Figure S-5: MALDI-TOF-MS analysis of major apolipoproteins and their isoforms in HDL with dialysis desalting. A-I, apoAI (calculated mass: m/z 28078); A-I_{2+}+2add_{2+}, apoAI + two 98-Da adducts (calculated mass: m/z 14137.4); A-II, apoAII (calculated mass: m/z 17379.8); A-II', apoAII minus C-terminus-Gln (calculated mass: m/z 17253.7); A-II'', apoAII minus two C-terminus-Gln (calculated mass: m/z 17125.6); A-IImonomer, single chain apoAII (calculated mass: m/z 8809.9); C-I, apoCI (calculated mass: m/z 6630.6); C-I', apoCI minus N-terminus Thr-Pro (calculated mass: m/z 6432.4); C-II, apoCII (calculated mass: m/z 8204.1); proC-II, pro-apoCII (calculated mass: m/z 8914.9); C−III_{0}, apoCIII_{0} (calculated mass: m/z 8765.7); C−III_{1}, apoCIII_{1} (calculated mass: m/z 9421.3); C−III_{0}, Glyc', Galβl, 3GalNAc-O-apoCIII_{0} (calculated mass: m/z 9130.0); C−III_{2}, apoC−III_{2} (calculated mass: m/z 9712.6); C−III_{2}', ApoC−III_{2} minus C-terminus–Ala (calculated mass: m/z 9641.5); SAA4 (calculated mass: m/z 12863.2).
Table S-1: The detected glycopeptides of HRP from BSA (50 ng) and HRP (250 ng) tryptic digests mixture after HP plate enrichment. The N-glycosylation sites12,38 are marked with N#. GlcNAc = N-acetylglucosamine, Fuc = fructose, Man = mannose, Xyl = xylose.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Observed m/z</th>
<th>Glycan composition</th>
<th>Amino acid sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>1842.8</td>
<td>Man3GlcNAc2FucXyl</td>
<td>NVGLN#R</td>
</tr>
<tr>
<td>H2</td>
<td>2541.2</td>
<td>Man3GlcNAc2FucXyl</td>
<td>SSPN#ATDTIPLVR</td>
</tr>
<tr>
<td>H3</td>
<td>2611.2</td>
<td>Man3GlcNAc2Xyl</td>
<td>MGN#ITPLTGTQGQIR</td>
</tr>
<tr>
<td>H4</td>
<td>3321.7</td>
<td>Man3GlcNAc2FucXyl</td>
<td>QLTPTFYDNSCP#VSNIVR</td>
</tr>
<tr>
<td>H5</td>
<td>3353.7</td>
<td>Man3GlcNAc2FucXyl</td>
<td>SFAN#STQTFNAFVEAMDR</td>
</tr>
<tr>
<td>H6</td>
<td>3377.9</td>
<td>Man2GlcNAc2fuc</td>
<td>GLIQSDQELFSSPN#ATDTIPLVR</td>
</tr>
<tr>
<td>H7</td>
<td>3672.1</td>
<td>Man3GlcNAc2FucXyl</td>
<td>GLIQSDQELFSSPN#ATDTIPLVR</td>
</tr>
<tr>
<td>H8</td>
<td>3895.1</td>
<td>Man3GlcNAc2FucXyl</td>
<td>LHFHDCFVNGCDASILLDN#TTSFR</td>
</tr>
<tr>
<td>H9</td>
<td>4222.6</td>
<td>Man3GlcNAc2FucXyl</td>
<td>QLTPTFYDNSC(AAVESACPR)PN#VSNIVR</td>
</tr>
<tr>
<td>H10</td>
<td>4984.5</td>
<td>Man3GlcNAc2FucXyl</td>
<td>LYN#FSNTGLPDPTLN#TTYLQTLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Man3GlcNAc2FucXyl</td>
<td></td>
</tr>
</tbody>
</table>