# **Electronic Supplementary Information (ESI)**

# Investigation of newly identified G-quadruplexes and its application

## to DNA detection

Wenjing Liu, Min Lin, Xiaohai Yang,\* Bin Wu, Nandi Chen, Qing Wang, Kemin Wang,\* Shiya Qin

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, China 410082. E-mail: yangxiaohai@hnu.edu.cn, kmwang@hnu.edu.cn; Tel/Fax: +86 731 88821566.





Fig. S1 The dissociation constant (K<sub>d</sub>) for the G-quadruplex/hemin complexes was determined by plotting the absorbance changes of hemin (0.5  $\mu$ M) at 405 nm against DNA concentrations (0 - 1.5  $\mu$ M).



S-2. Optimization of  $H_2O_2$  concentration for peroxidase-like activity of G-quadruplex

Fig. S2 Optimization of  $H_2O_2$  concentration, the concentrations of hemin, DNA and ABTS were 0.5  $\mu$ M, 200 nM and 6 mM, respectively. Error bars indicated the standard deviations of three experiments.



S-3. Optimization of ThT concentration for G-quadruplex enhanced fluorescence of ThT

**Fig. S3** Optimization of ThT concentration, the concentration of DNA is 100 nM. Error bars indicated the standard deviations of three experiments.

| Name           | Sequence (5'-3')                                  |
|----------------|---------------------------------------------------|
| temp-9th-3-35  | TAATCCAAATGACCCACCCCCCCCCCCCTGTTGGACCTCAGCTCAA    |
|                | CATCAGTCTGATAAGCTA                                |
| temp-10th-2-40 | GGTAGTACATTGCCCCCGTAAAAACCCACCCCCCCGCCCACCTCAG    |
|                | CTCAACATCAGTCTGATAAGCTA                           |
| target DNA     | TAGCTTATCAGACTGATGTTGA                            |
| cDNA-9th-3-35  | TGAGGTCCAACAGGGTGGGGGGGGGGGGGGGGGGGGGTCATTTGGATTA |
| cDNA-10th-2-40 | TGAGGTGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG           |
| 1-mut-DNA      | TAGCTTATCAGACTGATGTTCA                            |
| 2-mut-DNA      | TAGCTTATCAGACTGATGT <mark>AC</mark> A             |
| random DNA     | N <sub>22</sub>                                   |

Table S1. Oligonucleotide sequences used for DNA detection.

Nucleotide mismatches were marked in red and indicated as italic letters.

#### S-4. Agarose electrophoresis analysis for DNA detection

The SDA reaction was verified by gel electrophoresis. As shown in Fig. S3, when target DNA hybridized with template, a much brighter band appeared (Lane 4), when polymerase existed, a brighter and slightly higher band appeared (Lane 5), while in the presence of polymerase and nicking enzyme (Lane 6), a band closely to the band of cDNA (Lane 3) appeared, which indicated that large amounts of cDNA was successfully nicked from the double-stranded DNA. Thus, the designed SDA reaction could be triggered successfully by target DNA when temp-9th-3-35 was used as template. However, when we used temp-10th-2-40 as template, SDA reaction could not be triggered by target DNA.



**Fig. S4** Gel electrophoresis verification of target triggered SDA. Target DNA (Lane 1, 4, 5): 500 nM; target DNA (Lane 6): 100 nM; template:500 nM, cDNA: 500 nM; polymerase: 0.075 U/ $\mu$ L; nicking enzyme: 0.25 U/ $\mu$ L; (+ means in the presence of, - means in the absence of).

#### S-5. Condition optimization for DNA detection



**Fig. S5** Effects of different conditions for target DNA detection. (A) Different concentration of template, the concentrations of target DNA, polymerase, nicking enzyme and ThT were 10 nM, 0.075 U/ $\mu$ L, 0.25 U/ $\mu$ L and 20  $\mu$ M, respectively. (B) Different concentration of polymerase, the concentrations of template, target DNA, nicking enzyme and ThT were 10 nM, 10 nM, 0.25 U/ $\mu$ L and 20  $\mu$ M, respectively. (C) Different concentration of nicking enzyme, the concentrations of template, target DNA, polymerase and ThT were 10 nM, 10 nM, 0.1 U/ $\mu$ L and 20  $\mu$ M, respectively. F and F<sub>0</sub> represent the fluorescence intensity in the presence and absence of 10 nM target DNA, respectively. Error bars indicated the standard deviations of three experiments.

### S-6. Selectivity for DNA detection



**Fig. S6** Selectivity of the designed DNA sensing platform. The concentrations of template, DNA, polymerase, nicking enzyme and ThT were 10 nM, 10 nM, 0.1 U/ $\mu$ L, 0.06 U/ $\mu$ L and 20  $\mu$ M, respectively. Error bars indicated the standard deviations of three experiments.