Supporting Information

A novel ascorbic acid electrochemical sensor based on spherical MOF-5 arrayed on three-dimensional porous carbon electrode

Yonggui Song1,2, Couchong Gong1, Dan Su2, Yuan Shen1, Yonghai Song1 and Li Wang1,*

1Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.

2Jiangxi University of Chinese Traditional Medicine, 56 Yangming Road, Nanchang 330006, China.

*Corresponding author: Tel/Fax: +86 791 88120861. E-mail: lwanggroup@aliyun.com (L. Wang).
Fig. S1. Schematic illustration of the fabrication of MOF-5/3D-KSC composites and integrated MOF-5/3D-KSC electrode.
Fig. S2. CVs of GC electrode (A) and integrated MOF-5/3D-KSC electrode (B) in 0.1 M KCl solution containing 5.0 mM Fe(CN)$_6^{3-/4-}$ at 50 mVs$^{-1}$.

The effective surface areas (A_{eff}) of various GC electrode and integrated MOF-5/3D-KSC electrode were estimated before use based on the CVs in 0.1 M KCl solution containing 5.0 mM Fe(CN)$_6^{3-/4-}$ at 0.05 V s$^{-1}$ according to Randles-Sevcik equation:

$$I_p = 2.69 \times 10^5 A n^{3/2} D_0^{1/2} v^{1/2} C_0$$

(1)

where n is the number of electrons participating in the redox ($n = 1$ for Fe(CN)$_6^{3-/4-}$), D_0 is the diffusion coefficient of the molecule in a solution (0.673×10$^{-5}$ cm2 s$^{-1}$ for Fe(CN)$_6^{3-/4-}$ in 0.1 M KCl solution, C_0 is the bulk concentration of the redox probe ($C_0 = 5$ mM of the Fe(CN)$_6^{3-/4-}$). As shown in Fig. S1, the I_p was calculated to be 47.66 (A) and 78.35 (B) and accordingly the value of A_{eff} for the GC electrode and integrated MOF-5/3D-KSC electrode was estimated to be 0.0610 cm2 and 0.1003 cm2.

In the CVs shown in Fig. S2, the peak current (I_p) is indicated, which is used to calculate the effective surface area (A_{eff}) of the electrodes using the Randles-Sevcik equation:

$$I_p = 2.69 \times 10^5 A n^{3/2} D_0^{1/2} v^{1/2} C_0$$

(1)

where n is the number of electrons participating in the redox ($n = 1$ for Fe(CN)$_6^{3-/4-}$), D_0 is the diffusion coefficient of the molecule in a solution (0.673×10$^{-5}$ cm2 s$^{-1}$ for Fe(CN)$_6^{3-/4-}$ in 0.1 M KCl solution), C_0 is the bulk concentration of the redox probe ($C_0 = 5$ mM of the Fe(CN)$_6^{3-/4-}$). The calculated I_p values for the GC electrode and integrated MOF-5/3D-KSC electrode were 47.66 (A) and 78.35 (B) respectively, leading to A_{eff} values of 0.0610 cm2 and 0.1003 cm2.
Fig. S3. (A) SEM image of MOF-5. (B) The high magnification image of MOF-5.
Fig. S4. SEM images of the MOF-5/3D-KSC composites prepared by (A) 40 mg ml\(^{-1}\) (B) 60 mg ml\(^{-1}\) (C) 70 mg ml\(^{-1}\) (D) 90 mg ml\(^{-1}\) zinc nitrate hexahydrate, and the concentration ratio of zinc nitrate hexahydrate and H\(_2\)BDC is 5.45:1.
Table. S1 Determination AA in parenteral nutrient solution samples (N= 5)

<table>
<thead>
<tr>
<th>NO.</th>
<th>The content (mM)</th>
<th>Added (mM)</th>
<th>Found (mM)</th>
<th>RSD (%)</th>
<th>Recovery (%)</th>
<th>HPLC method (mM)</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.78</td>
<td>3</td>
<td>6.65</td>
<td>2.9</td>
<td>95.7</td>
<td>6.71</td>
<td>1.9</td>
</tr>
<tr>
<td>2</td>
<td>3.86</td>
<td>3</td>
<td>6.76</td>
<td>2.8</td>
<td>96.7</td>
<td>6.68</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>4.05</td>
<td>3</td>
<td>6.91</td>
<td>3.2</td>
<td>95.3</td>
<td>7.11</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>3.25</td>
<td>3</td>
<td>6.18</td>
<td>2.6</td>
<td>97.6</td>
<td>6.15</td>
<td>1.5</td>
</tr>
</tbody>
</table>