Supporting Information

For

Nanocomposite of ferrocenoyl glutaric acid hydrazone and multiwalled carbon nanotubes as a sensor of azide ion

Ida Tiwari*, Mandakini Gupta, Abhishek Rai, Lallan Mishra

Centre of Advanced Study, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi- 221 005, India

Mass spectroscopic data of ferrocenoyl glutaric acid hydrazoneS1

1H NMR spectrum of ferrocenoyl glutaric acid hydrazoneS2

13C NMR spectrum of ferrocenoyl glutaric acid hydrazoneS3

IR spectrum of ferrocenoyl glutaric acid hydrazoneS4

CV of ferrocene-4-carboxyladehyde/MWCNTs/nafion modified GCE at different scan rates (10-250 mV/s; Fig. S5 (a)), photograph showing bad film forming ability of ferrocene-4-carboxyladehyde/MWCNTs/nafion (Fig. S5 (b)) and photograph showing very good film forming ability of L/MWCNTs/nafion nanocomposite modified electrode (Fig. S5 (c))

......S5

Interference data for L/MWCNTs/nafion nanocomposite modified electrodeS6

Bar graph (A) Detection of 1.86 mM concentration of azide by varying different concentration of nafion, keeping MWCNTs and L constant, (B) Detection of 1.86 mM concentration of azide by varying different concentration of MWCNTs, keeping nafion and L constant; (C) Detection of 1.86 mM concentration of azide by varying different concentration of L, keeping MWCNTs and nafion constant (D) Effect of deposition time on the response of modified electrode (E) Effect of pH on modified electrodeS7
S1: ESI-Mass spectroscopic data of ferrocenoyl glutaric acid hydrazone
S2: 1H NMR spectrum of ferroenoyl glutaric acid hydrazone
S3: 13C NMR spectrum of ferrocenoyl glutaric acid hydrazone
S4: IR spectrum of ferrocenoyl glutaric acid hydrazone
Fig. S5. CV of ferrocene-4-carboxyldehyde/MWCNTs/nafion modified GCE at different scan rates, 10-250 mV/s (a); photograph of ferrocene-4-carboxyldehyde/MWCNTs/nafion (b); and photograph of L/MWCNTs/nafion nanocomposite modified electrode (c).
S6: Interference data for L/MWCNTs/nafion nanocomposite modified GCE
Fig.S7 Bar graph (A) Detection of 0.0422 mM concentration of azide by varying different concentration of nafion, keeping MWCNTs and L constant, (B) Detection of 0.0422 mM concentration of azide by varying different concentration of MWCNTs, keeping nafion and L constant; (C) Detection of 0.0422 mM concentration of azide by varying different concentration of L, keeping MWCNTs and nafion constant (D) Effect of deposition time on the response of modified electrode on addition of 0.0422 mM azide (E) Effect of pH on modified electrode