Supporting Information

Highly efficient Aggregation-induced emission fluorescent sensor for Copper (II) in aqueous media

Dongmi Li, Juanjuan Li, Ying Duan, Bangtun Zhao and Baoming Ji*

College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China. E-mail: lyhxxjbm@126.com

Materials and Methods

Materials. All reagents and solvents were chemical pure (CP) grade or analytical reagent (AR) grade and were used as received.

Measurements

1H and 13C NMR were measured on 400 MHz Bruker Advanced III. Mass spectrum was measured on Waters instrument. IR was measured on Bruker VERTEX70. Fluorescent spectra were collected on Hitachi F-4500 spectrophotometer. UV-Vis scanning were measured on Hitachi U-3010 spectrophotometer. Dynamic light scattering (DLC) was measured on a particle size analyzer. Fluorescence lifetimes were measured on Edinburgh Instruments FLS 980. Fluorescence quantum yield were measured on Hamamatsu Quantaurus-QY CI11347-11.

Synthesis of 3

To the flask were added (E)-α-(p-aminophenyl)-β-(p-hydroxyphenyl) acrylonitrile (2.36 g, 10 mmol), salicylic aldehyde (1.22 g, 10 mmol), dry ethanol (30 ml) and acetic acid (0.12 g, 2 mmol) in order. The mixture was refluxed for about 2 h. After cooling to room temperature, the formed yellow precipitate was filtered. Then, the crude product was recrystallized in methanol to get 3 as yellow powder (3.10 g, 91 %). Mp 216.4–218.6 °C; IR (KBr) ν 3346, 3278, 2212, 1615, 1593, 1510, 1282, 1172, 837, 761 cm$^{-1}$; 1H NMR (400 MHz, DMSO) δ 12.99 (s, 1H), 10.30 (s, 1H), 9.03 (s, 1H), 7.96 (s, 1H), 7.88 (d, $J = 6.4$ Hz, 2H), 7.80 (d, $J = 6.0$ Hz, 2H), 7.68 (d, $J = 6.0$ Hz, 1H), 7.55 (d, $J = 6.8$ Hz, 2H), 7.43 (s, 1H), 6.98 (d, $J = 7.6$ Hz, 2H), 6.92 (d, $J = 6.8$ Hz, 2H) ppm; 13CNMR (100 MHz, DMSO) δ: 163.6, 160.3, 160.1, 148.0, 142.5, 133.5, 132.9, 132.6, 131.5, 126.4, 124.8, 122.2, 119.3, 119.2, 118.5, 116.6, 115.9, 105.2, 105.1 ppm; MS m/z caled for C$_{22}$H$_{16}$N$_2$O$_2$ 340.1 [M], found 340.15 [M].
Fig. S1. 1H NMR spectrum of 3 in DMSO.

Fig. S2. 13C NMR spectrum of 3 in DMSO.
Fig. S3. IR spectrum of 3.

Fig. S4. MS spectrum of 3.
Fig. S5. (A) Fluorescence spectra of 3 (5.0 ×10^{-5} M) with a change of the water fraction in THF. Inset: fluorescence intensity of 3 at 508 nm vs. water fraction; (B) Images of compound 3 (5.0 ×10^{-5} M) with a change of the water fraction in THF under UV light.

Fig. S6. Fluorescence spectrum of 3 in the mixture of Cu^{2+} and other metal ions, solvent: H_{2}O : THF = 9 : 1, [3] = [metal] = 2 ×10^{-5} M.

Fig. S7. The plot of a^2/(1 - a) vs. 1/[Cu^{2+}] at 555 nm, solvent: H_{2}O : THF = 9 : 1, [3] = 2 ×10^{-5} M; [Cu^{2+}] = 0–4 ×10^{-5} M.
Calculation of binding constant: The binding constant of 2 : 1 complexes were evaluated by the equation:
\[a^2/(1-a) = 1/(2K_aC_F[M]), \]
where \(a \) is defined as \([F - F_0]/[F_1 - F_0]\), \(C_F \) is the total concentration of probe 3, \(F \) is fluorescence intensity of probe 3 in the presence of \(Cu^{2+} \), \(F_1 \) is fluorescence intensity of probe 3 in the absence of metal; \(F_0 \) is fluorescence intensity of probe 3 completely complexed with the metal ion. The plot \(a^2/(1-a) \) vs. \(1/[Cu^{2+}] \) was a straight line, and the binding constant of \(3–Cu^{2+} \) was found to be \(4 \times 10^{-9} \) M\(^{-2}\).

Fig. S8. The detection limit of probe 3 for copper \(Cu^{2+} \)

Calculation of detection limit: The detection limit was calculated based on a reported method. According to the fluorescence titration experiment, the fluorescent intensity of 3 decreases with the increase of the content of copper ion in the range of 0-10 \(\mu \)m. A linear was then fitted between \(\log([Cu^{2+}]) \) and \((F_{min} - F)/(F_{min} - F_{max}) \), and the point at which this line crossed the axis was considered as the detection limit (1.5 \(\times \) 10\(^{-6} \) M).

Fig. S9. The Job plot of compound 3 (2\(\times \)10\(^{-5} \) M) with \(Cu^{2+} \) at 370 nm, solvent: H\(_2\)O : THF = 2:1; [3] = 2.5 \(\times \) 10\(^{-5} \) M; [Cu\(^{2+}\)] = 0–5 \(\times \) 10\(^{-5} \) M.

Fig. S10. MS spectrum of compound 3 in the presence of \(Cu^{2+} \); the peak at m/z 767.2 correspond to [2\(\cdot \)3\(^+\) Cu\(^{2+}\) + Na\(^+\)].
Fig. S11. (A) Dynamic light scattering (DLS) diagram of compound 3, (B) DLS diagram of compound 3 and Cu$^{2+}$. solvent: H$_2$O : THF = 9:1; [3] = 2×10$^{-5}$ M; [Cu$^{2+}$] = 1×10$^{-5}$ M.

Fig. S12. Fluorescence spectra of compound 3 with different amounts of Cu$^{2+}$. Solvent: lake water: THF = 9 : 1; [3] = 2×10$^{-5}$ M; [Cu$^{2+}$] = 0–4×10$^{-5}$ M; Inset: the fluorescence change of compound 3 with Cu$^{2+}$ at 550 nm; (B) The Job plot of compound 3 (2×10$^{-5}$ M) with Cu$^{2+}$ at 550 nm.

References: