Supporting Information

Electrochemical sensor based on fullerene nanorods for detection of paraben an endocrine disruptor

Jahangir Ahmad Rather*a, Abir Jumaa Al Harthi a, Emad A. Khudaish*a, Ahsanulhaq Qurashi*b, Abdul Munam*a, Palanisamy Kannanc

*a Department of Chemistry, Sultan Qaboos University, Box 36, Al-Khod 123, Oman
b Center of Research Excellence in Nanotechnology and Department of Chemistry, King Fahd University of Petroleum & Minerals Dhahran 31261, Saudi Arabia
c Singapore Center for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore-637551

Corresponding author

Dr. Jahangir Ahmad Rather (Member of RSC)
Department of Chemistry
Sultan Qaboos University,
Oman.
Email: Jahangir@squ.edu.om
Tel: +968-24141491
Figure S1: Electrochemical reduction of nitrophenyl diazonium salt (Cl\(\cdot\)N\(_2\)^+\(\cdot\)Ph\(\cdot\)NO\(_2\)) at GCE (scan rate 100 mVs\(^{-1}\)). The reduction peak observed at -0.07 V corresponds to electrochemical reduction of nitrophenyl diazonium salt.
Figure S2: UV-vis spectrum of p-nitroaniline (PNA) reduction to p-phenylenediamine (PDA) after addition of NaBH₄/Au–PANI system observed before (A) and after (B) reduction process. Cyclic voltammograms (CV) are confirming the presence of nitrophenyl group at GCE–Ph–NO₂ (C) and phenylamine group formed at GCE–Ph–NH₂ (D) after reduction with NaBH₄/Au–PANI system.
Figure S3: Electrochemical reduction (ER) of C_6H_{30}NRs–NH–Ph–GCE and C_6H_{30}–NH–Ph–GCE in 1.0 M KOH at a scan rate of 10 mVs$^{-1}$.