Supporting information

Highly sensitive colorimetric detection of copper ions based on regulating the peroxidase-like activity of Au@Pt nanohybrids

Na Pan,^{‡a} Yan Zhu,^{‡a} Liang-Liang Wu,^a Zheng-Jun Xie,^a Feng Xue^{*b} and Chi-Fang Peng^{*a}

^a State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan

University, No. 1800, Lihu Avenue, Wuxi, 214122, China Email: pcf@jiangnan.edu.cn

^b Animal, Plant and Food Inspection Center, Jiangsu Entry-Exit Inspection and Quarantine Bureau, No.

99, Zhonghua Road, Nanjing, 210001, China Email: fengxue1219@aliyun.com

Preparation of Pt NPs

Pt nanoparticles were synthesized according to the report.¹ A solution of $H_2PtCl_6 \cdot (H_2O)_6$ (0.2%, 36 mL) was added to boiling deionized water (464 mL) for 1 min. Subsequently, a mixture (11 mL) of 1% sodium citrate and 0.05% citric acid was added to a boiling solution of $H_2PtCl_6 \cdot (H_2O)_6$. After 30 s, a freshly prepared NaBH₄ (0.08%, 5.5 mL) solution containing 1% sodium citrate and 0.05% citric acid was rapidly injected to the resulting solution. After 10 min, a solution of the formed Pt NPs was cooled down to room temperature. TEM image show that the diameter of the Pt NPs was 5 nm.

Fig. S1 EDX spectrum of Au@PtNHs

Fig. S2 TEM image of PtNPs.

Fig. S3 Inhibition of L-cysteine toward the peroxidase-like activity of PtNPs.

UV-vis spectra of (a) PtNPs-TMB-H₂O₂ reaction solution, (b) L-cysteine-PtNPs -TMB-H₂O₂ reaction solution, (c) TMB-H₂O₂ reaction solution and (d) PtNPs solution. [L-cysteine], 2.0 μ M; [Cu²⁺], 200 nM.

Fig. S4 The size distribution of the Au@PtNHs before and after incubated with L-Cys and the mixture of Cu^{2+} and L-Cys.

 Cu^{2+} and L-Cys were first incubated for 30 min and then mixed with Au@PtNHs) for 10 min for DLS measurements.

Fig. S5 Different concentrations of L-cysteine were investigated.

 $[Au@PtNHs] = 12 \text{ pM}, [PB \text{ buffer}] = 5 \text{ mM} (pH 7.0), [H_2O_2] = 0.4 \text{ M}, [TMB] = 1.0 \text{ mM},$ [citrate buffer] =0.04 M (pH 4.5) ;Incubation time for the mixture of L-cysteine and Cu²⁺, 20min; Incubation time for the mixture of L-cysteine, Cu²⁺ and Au@PtNHs, 10 min; color-developing time, 10min.

Fig. S6 Different pH values of Phosphate buffer were investigated. $[Au@PtNHs] = 12 \text{ pM}, \text{ [cysteine]} = 100 \mu\text{M}, \text{ [PB buffer]} = 5 \text{ mM}, [H_2O_2] = 0.4 \text{ M}, [TMB] = 0.3 \text{ mM}, \text{ [citrate buffer]} = 0.04 \text{ M} (\text{pH 4.5}) \text{ ; Incubation time for the mixture of L-cysteine and Cu}^{2+}, 20 \text{ min; Incubation time for the mixture of L-cysteine ,Cu}^{2+} \text{ and Au}@PtNHs, 10 \text{ min; color-developing time, 10min.}$

Fig. S7 Different concentrations of Phosphate buffer (pH 6.0) were investigated. $[Au@PtNHs] = 12 \text{ pM}, \text{ [cysteine]} = 100 \mu\text{M}, \text{ [H}_2\text{O}_2] = 0.4 \text{ M}, \text{[TMB]} = 0.3 \text{ mM}, \text{[citrate buffer]}$ =0.04 M (pH 4.5) ;Incubation time for the mixture of L-cysteine and Cu²⁺, 20 min; Incubation time for the mixture of L-cysteine ,Cu²⁺ and Au@PtNHs, 10 min; color-developing time, 10min.

Fig. S8 Different reaction time between L-cysteine and Cu^{2+} was investigated. [Au@PtNHs] = 12pM, [cysteine] = 100 μ M, [PB buffer] = 15 mM (pH 6.0), [H₂O₂] = 0.4 M, [TMB] =0.3 mM, [citrate buffer] =0.04 M (pH 4.5) ; Incubation time for the mixture of L-cysteine, Cu^{2+} and Au@PtNHs, 10 min; color-developing time, 10min.

Fig. S9 Different concentrations of TMB were investigated.

 $[Au@PtNHs] = 12 \text{ pM}, [L-cysteine] = 100 \mu\text{M}, [PB buffer] = 15 \text{mM} (\text{pH 6.0}), [H_2O_2] = 0.4 \text{ M},$ [citrate buffer] =0.04 M (pH 4.5); Incubation time for the mixture of L-cysteine and Cu²⁺, 30 min; Incubation time for the mixture of L-cysteine,Cu²⁺ and Au@PtNHs, 10 min, color-developing time, 10 min.

Fig. S10 Different concentrations of H_2O_2 were investigated. [Au@PtNHs] = 12 pM, [cysteine] = 100 μ M, [PB buffer] = 15 mM (pH 6.0), [TMB] = 0.44 mM, [citrate buffer] =0.04 M (pH 4.5) ;Incubation time for the mixture of L-cysteine and Cu²⁺,30min;Incubation time for the mixture of L-cysteine ,Cu²⁺ and Au@PtNHs, 10 min, color-developing time, 10min.

	LOD			
Probes	By UV-vis spectrometry	By the naked eyes	- Linear range	Ref.
Gold nanoparticles	0.04 µM	2.0 µM	0.2 - 4 μM	2
Azide-tagged gold nanoparticles	1.8 µM	1.8 µM	1.8 - 200 μM	3
Silver/dopamine nanoparticle	50.0 nM	_	0.05 - 8 μM	4
Thiomalic acid functionalized Ag nanoparticles	1 nM	_	1 - 50 nM	5
Polyamine-functionalized gold nanoparticles	30 nM	_	0.1 - 1 μM	6
Gold nanoparticles	30 nM	—	0.05 - 1.85 μM	7
Gold nanoparticles	5 nM	40 nM	10 - 80 nM	8
gold nanorods	1.6 nM	_	5 nM - 500 mM	9
Gold nanorods	4.96 nM	10 nM	10 - 300 nM	10
Silver-coated gold nanorods	3 nM	_	3 - 1000 nM	11
Ag nanoparticles	0.25 μM	0.75 μM	0.25 - 2.0 μM	12
A monoazo dye, Chromotrope 2R	3.4 nM	_	5.0 - 1000 nM	13
Au@PtNHs	4.0 nM	20 nM	20.0 -500 nM	(this work)

Table S1 Comparison of several colorimetric methods for Cu2+ detection based on nanoparticles

Spiked (nM)	Found (nM)	Recovery (%)	RSD (%)
0	33.9 ^a	-	5.7
20.0	53.4	97.5	4.4
50.0	88.5	109.2	6.6
100.0	130.3	96.4	3.2
200.0	244.7	105.4	3.9

Table S2 Determination of Cu²⁺ in tap water samples (n=3)

^a The sample was also detected by graphite furnace AAS method and the result was 32.5 nM. The relative deviation of 2 values was lower than 5%.

Green tea samples	Measured by AAS (µg/g)	Measured by this method (µg/g)
1	20.2±1.3	21.5±1.9
2	24.1±1.1	24.9±1.5
3	32.8±1.5	31.9±2.3

Table S3 Determination of Cu²⁺ in green tea samples (n=3)

$$6RS^{-} + 2Cu^{II} \rightarrow RSSR + 2RS^{-}Cu^{I} - SR$$
$$RS^{-}Cu^{I} - SR + O_{2} \rightarrow RS^{-}Cu^{I} \cdot SR + O_{2}^{-}$$
$$2O_{2}^{-} + 2H^{+} \rightarrow O_{2} + H_{2}O_{2}$$
$$RS^{-}Cu^{I} \cdot SR \rightarrow 1/2RSSR + RS^{-}Cu^{I}$$

 $RS^{-}Cu^{\mathrm{I}} + \mathrm{O}_{2} + 2\mathrm{H}^{+} \rightarrow 1/2RSSR + \mathrm{H}_{2}\mathrm{O}_{2} + Cu^{\mathrm{II}}$

The detailed and total catalytic equations for the copper catalysed oxidation of L-cysteine (RSH).

References

- 1. C.-J. Yu, T.-H. Chen, J.-Y. Jiang and W.-L. Tseng, *Nanoscale*, 2014, 6, 9618-9624.
- H.-H. Deng, G.-W. Li, A.-L. Liu, W. Chen, X.-H. Lin and X.-H. Xia, *Microchim. Acta*, 2014, 181, 911-916.
- 3. C. Hua, W. H. Zhang, S. R. M. De Almeida, S. Ciampi, D. Gloria, G. Liu, J. B. Harper and J. J. Gooding, *Analyst*, 2012, **137**, 82-86.
- 4. K. Jomova and M. Valko, *Toxicol*, 2011, **283**, 65-87.
- 5. V. Tharmaraj and J. Yang, *Analyst*, 2014, **139**, 6304-6309.
- 6. Y. Zhang, R. Li, Q. Xue, H. Li and J. Liu, *Microchim. Acta*, 2015, **182**, 1677-1683.
- 7. M. R. Hormozi-Nezhad and S. Abbasi-Moayed, *Talanta*, 2014, **129**, 227-232.
- 8. R. Liu, Z. Chen, S. Wang, C. Qu, L. Chen and Z. Wang, *Talanta*, 2013, **112**, 37-42.
- 9. X. Niu, D. Xu, Y. Yang and Y. He, *Analyst*, 2014, **139**, 2691-2694.
- 10. S. Wang, Z. Chen, L. Chen, R. Liu and L. Chen, *Analyst*, 2013, **138**, 2080-2084.
- 11. X. Wang, L. Chen and L. Chen, *Microchim. Acta*, 2014, **181**, 105-110.
- 12. X. Yuan and Y. Chen, *Analyst*, 2012, **137**, 4516-4523.
- 13. L. Fu, Y. Xiong, S. Chen and Y. Long, Anal. Methods, 2015, 7, 266-270.