Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2016

Cellular uptake of drug loaded spider silk particles

Martina B. Schierling^{a*}, Elena Doblhofer^{a*}, Thomas Scheibel^{a-}

Supplementary Information

Table S 1: Loading efficiency of different protein particles upon incubation with 0.4 nmol of the corresponding model substance FI-ODN or PEI-FI per mg particle

Protein particle	Uptake efficiency FI-ODN	Uptake efficiency PEI-FI
	1 %	1 %
eADF4(C16)	-	26.6 ± 0.4
eADF4(C16)RGD	-	26.9 ± 0.4
eADF4(C16)R ₈ G	-	23.6 ± 0.3
eADF4(κ16)	40.6 ± 0.3	-

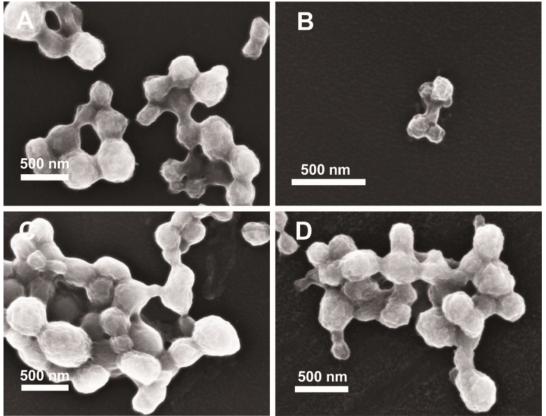


Fig. S 1 SEM Images of spider silk protein particles in dry state, A) eADF4(C16), B) eADF4(C16)R₈G, C) eADF4(C16)RGD, and D) eADF4(κ 16). Particles were produced after resuspending the respective protein in EMiM[acetate] followed by potassium phosphate precipitation. SEM images were taken at an accelerating voltage of 3 kV. Before imaging, the particles were air dried and sputtered with platinum.

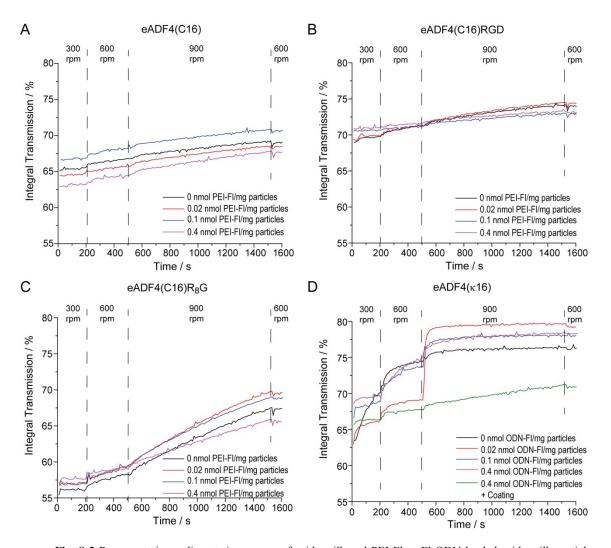


Fig. S 2 Representative sedimentation curves of spider silk and PEI-Fl or Fl-ODN loaded spider silk particles prepared from a 2 mg ml $^{-1}$ solution in EMiM[acetate] and analyzed at a concentration of 1.25 mg ml $^{-1}$, measured at an ionic strength of 12 mM (1/11 PBS) and pH 7.4. The single graphs show (A) eADF4(C16) particles, (B) eADF4(C16)RGD particles, (C) eADF4(C16)R $_8$ G and (D) eADF4(κ 16) particles, each in the absence and presence model drug as indicated.