Supplementary Information

Development of Controlled-Release Drug Delivery System by Encapsulated Oxaliplatin into SPIO/MWNT Nanoparticle for Effective Colon Cancer Therapy and Magnetic Resonance Imaging

Pei-Chi Leea, Chien-Yu Lina, Cheng-Liang Pengb*, Ming-Jium Shieha,*c.

aInstitute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.

bIsotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan.

cDepartment of Oncology, National Taiwan University Hospital and College of Medicine, #7, Chung-Shan South Road, Taipei 100, Taiwan.

*Corresponding authors

Ming-Jium Shieh. E-mail: soloman@ntu.edu.tw; Tel.:886-2-23562095; Fax: 886-2-23940049.

Cheng-Liang Peng. E-mail: d93548014@ntu.edu.tw; Tel.:886-3-4711400; Fax: 886-3-4711416.
Figure S1. Differential scanning calorimeter (DSC) data of MagMWNT5 after annealing treatment in helium atmosphere at 400°C for 30 min.
Figure S2. 1H-NMR spectrum of MagMWNT-PEG 6. The arrow indicates the characteristic peak of PEG at approximately 3.5 ppm.
Figure. S3. TGA data of (A) S-MWNT 3 and (B) MagMWNT-PEG6, under sufficient oxidation; the oxidation reaction is as follows: $2\text{Fe}_3\text{O}_4 + \frac{1}{2} \text{O}_2 \rightarrow 3(\alpha\text{-Fe}_2\text{O}_3)$.
Figure. S4. Cell viability of HCT116 cells treated with (A) MagMWNT 5 and (B) MagMWNT-PEG 6 at different concentrations for 6, 12, 24, 48, and 96 h.
Figure. S5. H&E and Prussian blue staining of primary organs at 24 and 96 h after IV injection with Oxa/MagMWNT-PEG 7 (10 mg/kg). Prussian blue staining revealed numerous nanoparticles accumulated in the spleen.