Photoinduced bending of rod-like millimetre-size crystals of a rhodium dithionite complex with \(n \)-pentyl moieties

Hidetaka Nakai,\(^a\)\(^{abed}\) Kengo Matsuba,\(^a\) Masataka Akimoto,\(^d\) Tomonori Nozaki,\(^d\) Takahiro Matsumoto,\(^b\)\(^c\) Kiyoshi Isobe,\(^d\) Masahiro Irie\(^e\) and Seiji Ogo\(^d\)\(^{abcd}\)

\(^a\) Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-o-ka, Nishi-ku, Fukuoka 819-0395, Japan
\(^b\) Centre for Small Molecule Energy, Kyushu University, 744 Moto-o-ka, Nishi-ku, Fukuoka 819-0395, Japan
\(^c\) International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-o-ka, Nishi-ku, Fukuoka 819-0395, Japan
\(^d\) Department of Chemistry, Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
\(^e\) Research Centre for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan

Experimental details
- General ... S 2
- X-ray crystallography .. S 3
- Syntheses of \(1\text{Pen} \) and \(2\text{Pen} \) .. S 4
- References .. S 6

Tables
- Table S1 Crystallographic data for samples 1, 2, 3, 3-95, 3-25 and 4 ... S 7
- Table S2 Percentage population of the isomers ... S 8

Figures
- Fig. S1 UV-vis spectral changes from \(1\text{Pen} \) to \(2\text{Pen} \) .. S 9
- Fig. S2 \(^1\)H NMR spectra of \(1\text{Pen} \) and \(2\text{Pen} \) .. S 10
- Fig. S3 IR spectra of \(1\text{Pen} \) and \(2\text{Pen} \) .. S 11
- Fig. S4 Reversible bending of a rod-like crystal of \(1\text{Pen} \) .. S 12
- Fig. S5 Bending and unbending of a rod-like crystal of \(1\text{Pen} \) .. S 13
- Fig. S6 Photoirradiation of a rod-like crystal of \(1\text{Pen} \) .. S 14
- Fig. S7 ORTEP drawings of \(2\text{Pen} \) at −165, −95, and −25 °C .. S 15

Videos
- Video S1 Bending of a rod-like crystal of \(1\text{Pen} \) .. S 16
- Video S2 Reversible bending of a rod-like crystal of \(1\text{Pen} \) .. S 16
Experimental details

General: Solvents were purified by distillation before use. Sodium dithionite, Na$_2$S$_2$O$_4$, was purchased from Aldrich. All other chemicals were obtained from commercial sources and used as received unless otherwise noted. The crystals were irradiated using an LED lamp (Moritex, LLS2: 420-750 nm) and a xenon-lamp (Asahi Spectra, Max-301 and 303: 300 W, 385-740 nm). The crystals were uniformly heated using a Leica 350 microscope heating stage. 1H and 13C NMR spectra were recorded on a Bruker Avance III 600 FT-NMR spectrometer in CDCl$_3$. Chemical shifts were referenced to protio solvent impurities (1H: δ 7.26, 13C: δ 77.0 (CDCl$_3$)). Infrared spectra were obtained with the KBr method on a Thermo Scientific Nicolet 6700 FT-IR spectrometer. Absorption spectra in a microcrystalline powder film were measured by using a Leica DMLP polarizing microscope connected with a Hamamatsu PMA-11 photodetector. Photographs and videos of the crystals were recorded by using an Olympus SZX7 microscope connected with a digital camera (Nikon digital sight DS-U1). Elemental analyses were performed using a Yanaco CHN-coder MT-5.
X-ray crystallography: All measurements were made on a Rigaku/MSC Saturn CCD diffractometer with confocal monochromated Mo Kα radiation (λ = 0.71070 Å). Data were collected and processed using CrystalClear software (Rigaku). The data were corrected for Lorentz and polarisation effects. Numerical absorption corrections were applied. The structures were solved by a direct method: SIR-92 and expanded using a Fourier technique. All calculations were performed using the CrystalStructure crystallographic software package except for refinement, which was performed using SHELXL Version2014/6. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model.

Samples 2, 3, 3-95, 3-25: two carbon atoms (C27 and C28) were refined without H.

Samples 3-95 and 3-25: the same occupancies as sample 3 were applied to O1, O2, O3, O4, O5 and O6.

Crystallographic data has been deposited with the Cambridge Crystallographic Data Centre (CCDC). CCDC reference number: 1445112 (Sample 1: 1^pm).
Syntheses

The \(n \)-pentyl derivative ligand precursor, HCp^{Pen} (Cp^{Pen} = \eta^5-C_5Me_4\eta-C_5H_{11})\), was synthesized according to the literature procedures.\(^5\) The starting material, \(\text{trans} -[(\text{RhCp}^{\text{Pen}})_2(\mu-\text{CH}_2)_2\text{Cl}_2] \), was synthesized by modifying the procedure for the corresponding Cp^{Me} (\(\eta^5-C_5\text{Me}_3 \)) analogue.\(^6\)

\[[(\text{RhCp}^{\text{Pen}})_2(\mu-\text{CH}_2)_2(\mu-\text{O}_2\text{SSO}_2)] \tag{1^{\text{Pen}}} \]

A mixture of \(\text{trans} -[(\text{RhCp}^{\text{Pen}})_2(\mu-\text{CH}_2)_2\text{Cl}_2] \) (972 mg, 1.31 mmol) and Na\(_2\)S\(_2\)O\(_4\) (410 mg, 2.36 mmol) in MeOH (100 mL) was stirred for 12 h under N\(_2\) in the dark at room temperature. The solvent was removed under reduced pressure to give a reddish brown solid. The crude product was dissolved in 100 mL of CH\(_2\)Cl\(_2\) and the insoluble solid was filtered off. Removal of the solvent afforded \(1^{\text{Pen}} \) as a red-orange solid. This solid was washed with Et\(_2\)O. Yield 854 mg, 87\%. Single crystals suitable for X-ray diffraction analysis were obtained from a saturated solution of \(1^{\text{Pen}} \) in \(n \)-C\(_6\)H\(_{14}\)/CH\(_2\)Cl\(_2\) (6/1) in the dark at room temperature.

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta 9.45 \) (2H, s, \(\mu-\text{CH}_2\)), \(8.56 \) (2H, s, \(\mu-\text{CH}_2\)), \(2.21 \) (4H, t, \(\text{C}_5\text{Me}_4\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\)), \(1.86 \) (12H, s, \(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(1.85 \) (12H, s, \(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(1.41 \) (4H, quin, \(\text{C}_5\text{Me}_4\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\)), \(1.35-1.30 \) (8H, m, \(\text{C}_5\text{Me}_4\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\)), \(0.90 \) (6H, t, \(\text{C}_5\text{Me}_4\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\)). \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta 173.6 \) (\(\mu-\text{CH}_2\)), \(107.4 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(104.5 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(103.9 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(31.7 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(29.2 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(24.7 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(22.4 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(13.9 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(9.61 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)), \(9.55 \) (\(\text{C}_5\text{Me}_4\text{en-}C_5\text{H}_{11}\)). Anal. Calc. for \(\text{C}_{30}\text{H}_{50}\text{O}_4\text{Rh}_2\text{S}_2 \): C, 48.39; H, 6.77. Found: C, 48.11; H, 6.75\%.
[(RhCpPen)\textsubscript{2}(\mu-CH\textsubscript{2})\textsubscript{2}(\mu-O\textsubscript{2}SOSO)] (2Pen): The red-orange crystals of 1pen were irradiated with the LED lamp (420-750 nm, 20 mW/cm2) for 2 h under N\textsubscript{2} at room temperature. The yellow-orange crystals of 2Pen were obtained quantitatively.

1H NMR (600 MHz, CDCl\textsubscript{3}): δ 9.50 (1H, s, \mu-CH\textsubscript{2}), 9.04 (1H, s, \mu-CH\textsubscript{2}), 8.61 (1H, s, \mu-CH\textsubscript{2}), 8.13 (1H, s, \mu-CH\textsubscript{2}), 2.28-2.15 (2H, m, C\textsubscript{5}Me\textsubscript{4}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 2.14-2.03 (2H, m, C\textsubscript{5}Me\textsubscript{4}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 1.86-1.83 (12H, m, C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 1.78-1.75 (12H, m, C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 1.43-1.37 (4H, m, C\textsubscript{5}Me\textsubscript{4}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 0.90 (6H, t, C\textsubscript{5}Me\textsubscript{4}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}). 13C NMR (150 MHz, CDCl\textsubscript{3}): δ 178.1 (\mu-CH\textsubscript{2}), δ 168.7 (\mu-CH\textsubscript{2}), 108.2 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 108.1 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 105.3 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 105.1 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 104.9 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 104.7 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 104.6 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 104.5 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 31.9 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 29.2 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 29.0 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 24.6 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 22.5 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 13.9 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 9.73 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 9.67 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 9.64 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 9.56 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 9.47 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 9.40 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}), 9.32 (C\textsubscript{5}Me\textsubscript{4}n-C\textsubscript{5}H\textsubscript{11}). Anal. Calc. for C\textsubscript{30}H\textsubscript{50}O\textsubscript{8}Rh\textsubscript{2}S\textsubscript{2}: C, 48.39; H, 6.77. Found: C, 48.17; H, 6.76%.
References

 Tokyo 196-8666, Japan.

 Tokyo 196-8666, Japan.

Tables

Table S1 Crystallographic data for samples 1, 2, 3, 3.95, 3.25 and 4

<table>
<thead>
<tr>
<th></th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 3.95</th>
<th>Sample 3.25</th>
<th>Sample 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (K)</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>178</td>
<td>248</td>
<td>108</td>
</tr>
<tr>
<td>Formula</td>
<td>C₃₀H₄₅S₂O₄Rh₂</td>
<td>C₃₀H₄₅S₂O₄Rh₂</td>
<td>C₃₀H₄₅S₂O₄Rh₂</td>
<td>C₃₀H₄₅S₂O₄Rh₂</td>
<td>C₃₀H₄₅S₂O₄Rh₂</td>
<td>C₃₀H₄₅S₂O₄Rh₂</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>µ (cm⁻¹)</td>
<td>12.00</td>
<td>11.83</td>
<td>11.88</td>
<td>11.66</td>
<td>11.62</td>
<td>12.00</td>
</tr>
<tr>
<td>F(000)</td>
<td>1536.00</td>
<td>1516.00</td>
<td>1516.00</td>
<td>1516.00</td>
<td>1516.00</td>
<td>1536.00</td>
</tr>
<tr>
<td>Dcalc(g/cm³)</td>
<td>1.557</td>
<td>1.525</td>
<td>1.531</td>
<td>1.502</td>
<td>1.498</td>
<td>1.556</td>
</tr>
<tr>
<td>Reflections</td>
<td>12666</td>
<td>12815</td>
<td>12814</td>
<td>12928</td>
<td>12978</td>
<td>12755</td>
</tr>
<tr>
<td>Independent</td>
<td>6531</td>
<td>6619</td>
<td>6626</td>
<td>6708</td>
<td>6747</td>
<td>6926</td>
</tr>
<tr>
<td>Data/parameters</td>
<td>(Rint = 0.0282)</td>
<td>(Rint = 0.0312)</td>
<td>(Rint = 0.0351)</td>
<td>(Rint = 0.0389)</td>
<td>(Rint = 0.0462)</td>
<td>(Rint = 0.0345)</td>
</tr>
<tr>
<td>R₁ [I > 2σ(I)]</td>
<td>0.0311</td>
<td>0.0389</td>
<td>0.0439</td>
<td>0.0425</td>
<td>0.0388</td>
<td>0.0448</td>
</tr>
<tr>
<td>wR₂ (all data)</td>
<td>0.0664</td>
<td>0.0815</td>
<td>0.1071</td>
<td>0.1047</td>
<td>0.0765</td>
<td>0.1027</td>
</tr>
<tr>
<td>Goodness-of-fit</td>
<td>1.061</td>
<td>1.045</td>
<td>1.046</td>
<td>1.034</td>
<td>1.020</td>
<td>1.090</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>0.039(15)</td>
<td>0.04(2)</td>
<td>0.05(2)</td>
<td>0.05(3)</td>
<td>-0.03(3)</td>
<td>0.013(19)</td>
</tr>
</tbody>
</table>
Table S2 Percentage population of the isomers, 1\(^{\text{Pen}}\), 2a\(^{\text{Pen}}\), 2b\(^{\text{Pen}}\), 2c\(^{\text{Pen}}\) and 2d\(^{\text{Pen}}\) in the crystal\(^{(a)}\)

<table>
<thead>
<tr>
<th></th>
<th>1(^{\text{Pen}})</th>
<th>2a(^{\text{Pen}}) (R)</th>
<th>2b(^{\text{Pen}}) (R)</th>
<th>2c(^{\text{Pen}}) (S)</th>
<th>2d(^{\text{Pen}}) (S)</th>
<th>2(^{\text{Pen}}) (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample 2</td>
<td>46</td>
<td>5</td>
<td>16</td>
<td>9</td>
<td>24</td>
<td>54</td>
</tr>
<tr>
<td>Sample 3</td>
<td>1</td>
<td>12</td>
<td>39</td>
<td>12</td>
<td>36</td>
<td>99</td>
</tr>
<tr>
<td>Sample 4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Although the crystal has mirror images of 2a\(^{\text{Pen}}\)--2d\(^{\text{Pen}}\) as a set, only one asymmetric unit in the crystal is considered in this treatment (Angew. Chem., Int. Ed., 2006, 45, 6473; J. Am. Chem. Soc., 2008, 130, 17836). (b) The four stereoisomers, 2a\(^{\text{Pen}}\)--2d\(^{\text{Pen}}\), concerned with the \(\mu\)-O\(_2\)SOSO unit. The Cp\(^{\text{Pen}}\) and \(\mu\)-CH\(_2\) ligands are omitted for clarity. The absolute configurations of the sulfur atoms are shown in parentheses.

The values of % for stereoisomers 2a\(^{\text{Pen}}\)--2d\(^{\text{Pen}}\) were calculated from the simultaneous equations based on the occupancy of the oxygen atoms determined by X-ray diffraction analysis. In the case of sample 2, the equations were as follows:

\[
\begin{align*}
0.7628 \text{ (occupancy of O}_1) & = 2a^{\text{Pen}} + 2b^{\text{Pen}} + 2c^{\text{Pen}} + 1^{\text{Pen}} \\
0.8450 \text{ (occupancy of O}_2) & = 2a^{\text{Pen}} + 2c^{\text{Pen}} + 2d^{\text{Pen}} + 1^{\text{Pen}} \\
0.9475 \text{ (occupancy of O}_3) & = 2b^{\text{Pen}} + 2c^{\text{Pen}} + 2d^{\text{Pen}} + 1^{\text{Pen}} \\
0.9083 \text{ (occupancy of O}_4) & = 2a^{\text{Pen}} + 2b^{\text{Pen}} + 2d^{\text{Pen}} + 1^{\text{Pen}} \\
0.2897 \text{ (occupancy of O}_5) & = 2a^{\text{Pen}} + 2d^{\text{Pen}} \\
0.2467 \text{ (occupancy of O}_6) & = 2b^{\text{Pen}} + 2c^{\text{Pen}} \\
\end{align*}
\]

\[2a^{\text{Pen}} = 0.0525, \quad 2b^{\text{Pen}} = 0.1550, \quad 2c^{\text{Pen}} = 0.0917, \quad 2d^{\text{Pen}} = 0.2372, \quad 1^{\text{Pen}} = 0.4636.\]
Figures

Fig. S1 The UV-vis spectral changes from 1^{Pen} (blue) to 2^{Pen} (red) in a microcrystalline powder film.
Fig. S2 1H NMR spectra of (a) 1^{Pen} (blue) and (b) 2^{Pen} (red) in CDCl$_3$ in the range of μ-CH$_2$ signals.
Fig. S3 IR spectra of (a) 1^{Pen} (blue) and (b) 2^{Pen} (red) in KBr.
Fig. S4 Reversible bending of a rod-like crystal \{1.5 mm (length) \times 15 \mu m (width) \times 8 \mu m (depth)\} of $^{\text{Pen}}$ by alternate irradiation (385–740 nm, 60 mW/cm2, 2 s) and heating (105–110 °C, 30 min).
Fig. S5 Bending and unbending of a rod-like crystal \{2.1 \text{ mm} (length) \times 20 \text{ µm} (width) \times 8 \text{ µm} (depth)\} of 1^Pen by prolonged photoirradiation from the right side (385–740 nm, 20 mW/cm2).
Fig. S6 Photoirradiation of a rod-like crystal of 1^{Pen} for X-ray diffraction analysis: the crystal was rotated around its long axis (c-axis) and irradiated uniformly.
Fig. S7 ORTEP drawings of 2^{hpa} with 50% probability ellipsoids at (a) $-165\degree$, (b) $-95\degree$ and (c) $-25\degree$ C (Table S1, Sample 3, 3$_{-95}$ and 3$_{-25}$, respectively). The hydrogen atoms are omitted for clarity.
Legends of Supporting Videos

Video S1. Bending of a rod-like crystal {1.3 mm (length) x 14 μm (width) x 8 μm (depth)} of 1Pen. The crystal was irradiated from right side (385–740 nm, 60 mW/cm2, 5 s).

Video S2. Reversible bending of a rod-like crystal {4.8 mm (length) x 44 μm (width) x 20 μm (depth)} of 1Pen. First, the crystal was irradiated from right side, and then from left side (385–740 nm, 20 mW/cm2, 10 s).