Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions

Hannelore Konnerth* and Martin H. G. Prechtl**

*Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany. E-mail: martin.prechtl@uni-koeln.de;
Web: http://catalysis.uni-koeln.de; Fax: +49 221 4701788.
Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
Experimental

General methods

All manipulations involving the [Ni(COD)_2] complex were carried out in a MBraun Labmaster 200 glovebox under an argon atmosphere.

Phenylacetylene was purchased from Alfa Aesar, diphenylacetylene was purchased from Acros Organics, dimethylacetylene dicarboxylate, 4-octyne, 1-octyne and 1-bromo-2-pentyne were purchased from SigmaAldrich, methyl non-2-ynoate and 1-ethynyl-4-methoxybenzene were purchased from Maybridge, trimethylsilyl-1-hexyne and 1-phenyl-2-trimethylsilylacetylene was purchased from ABCR. The organometallic precursor [Ni(COD)_2] was purchased from ABCR.

The ionic liquids 1,2-Dimethyl-3-butylimidazolium bis(trifluoromethanesulfonimide) [BMMIM]NTf_2, 1-Butyl-3-methylimidazolium bis(trifluoromethanesulfonimide) [BMIM]NTf_2, 1-n-Decyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonimide) [C_{10}MMIM]NTf_2, 1-(2,3-Dihydroxypropyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonimide) [C_{6}C_{1}(EG)IM]NTf_2, 1-n-Butyronitrile-2,3-dimethylimidazolium bis(trifluoromethanesulfonimide) [CNC_{3}MIM]NTf_2, 1-n-Butyronitrile-3-methylimidazolium bis(trifluoromethanesulfonimide) [CNC_{3}MIM]NTf_2 were prepared according to known literature methods and were dried in vacuo before they were placed in the glove box. All other commercially available chemicals were used without further purification.

Analytical methods

Transmission electron spectroscopy was recorded on Zeiss LEO912 with 120 kV. For the sample preparation one drop of the NP-dispersion embedded in ionic liquid was diluted in 2 ml acetone. Of this solution one drop was placed onto a holey carbon-coated copper grid.

1H-, 13C-APT- and 19F-NMR spectroscopy were recorded on a Bruker AVANCE II spectrometer at 298 K (300 MHz, 75 MHz, 182 MHz).

Gas Chromatography with Mass Spectrometry (GC-MS) and Gas Chromatography with Flame Ionization Detector (GC-FID) were performed using Agilent 5973 Network Mass Selective Detector with injection, auto sample, mass detector and flame ionization detector. As column MN Optima 5 MS Accent was used. As standard temperature program 50-300.MF was used (50 °C (2.0 min, 25 °C/min → 300 °C (5 min) with 0.7 bar and a flow rate of 1.7 ml/min). The yields of (E)-stilbene were determined using GC-FID.
Synthesis of Ni-NPs

In a typical experiment, adapted to our previous protocol, a screw-capped vial with butyl/PTFE septum was loaded with [Ni(COD)_2] (10.5 mg, 0.038 mmol) and the appropriate ionic liquid (0.15 g) under argon. The suspension was heated to 70 °C and stirred under argon for 20 h resulting in a black suspension. The NP-suspension was evaporated under reduced pressure to remove volatile by-products from the decomposition of the organometallic precursor. The monometallic Ni-NPs in [C_1C_1(EG)IM]NTf_2 were prepared according a literature method.\(^5\)

Hydrogenation reaction

In a typical experiment to the freshly prepared Ni-NPs in IL was added 0.76 mmol of the alkyne with 0.5-1.0 ml cyclohexane as co-solvent. Then the vial was placed in a stainless steel autoclave, the reactor was sealed, charged with 1 or 4 bar H_2 and was placed into a preheated aluminium heating block (1000 rpm) at the appropriate temperature. After the appropriate reaction time the reactor was cooled down to room temperature. For the work-up procedure the reaction mixture was extracted with 5 x 2 ml n-pentane, the solvent was evaporated under reduced pressure and 20 µl (0.01 mmol) hexamethyldisilane as internal standard was added. Alternatively for more volatile compounds, cyclohexane was used as internal standard. The residue was analysed using \(^1\)H- and \(^13\)C-APT-NMR spectroscopy and was compared to literature data.

For recycling experiments the solvent residues after the work up procedure were removed under reduced pressure. Afterwards new substrate and co-solvent was added and the reaction mixture was hydrogenated using the standard reaction conditions.

Test reaction without catalyst or applied H_2 pressure

Table 1: Hydrogenation of diphenylacetylene without Ni-catalyst and without applied H_2 pressure. 2: (Z)-stilbene, 3: (E)-stilbene, 4: 1,2-diphenylethane.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ni-NPs in [CNC_3MMIM]NTf_2 [mol%]</th>
<th>pH_2 [bar]</th>
<th>Conv. [%]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5 mol%</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Reaction conditions: 30 °C, 16 h, 1 ml cyclohexane. *0.15 g [CNC_3MMIM]NTf_2 was added to the reaction mixture.

Hydrogenation reaction with additive

Table 2: Hydrogenation of diphenylacetylene with Ni-NPs in [BMMIM]NTf_2 and acetonitrile as additive. 2: (Z)-stilbene, 3: (E)-stilbene, 4: 1,2-diphenylethane.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Me-CN [eq.]</th>
<th>Conv. [%]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>100</td>
<td>90.3</td>
</tr>
</tbody>
</table>

The synthesis of the Ni-NPs was conducted in 0.15 g [BMMIM]NTf_2. Reaction conditions of the hydrogenation reaction: 30 °C, 4 bar H_2, 16 h, 1 ml cyclohexane.
H₂ Pressure variation

SI-Figure 1: Hydrogenation of phenylacetylene with Ni-NPs in [CNC3MMIM]NTf2 under varying H₂ pressure. Reaction condition of the hydrogenation reactions: 30 °C, 2-60 bar H₂, 3 h, cyclohexane. The H₂ pressure variation for the hydrogenation of phenylacetylene provided that 100% conversion with selectivity for the styrene of about 73-84% can be obtained within 3 h at H₂ pressures between 2-40 bar. At 1 bar H₂ pressure 100% conversion has been obtained only after 16 h (7 h: 62%). Contrary at pressures as high as 60 bar H₂, the selectivity for styrene drops significantly down to 56%. This shows that already low H₂ pressures (<5 bar) are sufficient for high conversion and selectivity and this reflects the very high activity of the Ni-nanoscale catalyst in contrast to our previous reported iron based system.
Catalyst characterisation

SI-Figure 2: TEM picture of Ni-NPs dispersed in [BMIM]NTf2 (38 µmol metal in 0.3 g IL, 70 °C, 20 h) and histogram of size distribution. The mean particle diameter is 8.2 ± 1.3 nm.
Figure 3: TEM picture of Ni-NPs dispersed in [BMMIM]NTf₂ (38 µmol metal in 0.3 g IL, 70 °C, 20 h) and histogram of size distribution. The mean particle diameter is 7.8 ± 1.4 nm.
SI-Figure 4: TEM picture of Ni-NPs dispersed in [C₁₀MMIM][NTf₂] (38 µmol metal in 0.3 g IL, 70 °C, 20 h) and histogram of size distribution. The mean particle diameter is 4.4 ± 0.7 nm.
SI-Figure 5: TEM picture of Ni-NPs dispersed in [CNC₃MMIM][NTf₂] (38 µmol metal in 0.3 g IL, 70 °C, 20 h) and histogram of size distribution. The mean particle diameter is 7.0 ± 1.1 nm.
SI-Figure 6: TEM picture of Ni-NPs dispersed in [CNC₃MMIM]NTf₂ (38 μmol metal in 0.15 g IL, 70 °C, 20 h) and histogram of size distribution. The mean particle diameter is 7.8 ± 1.1 nm.
SI-Figure 7: TEM picture of Ni-NPs dispersed in [CNC$_2$MIM]NTf$_2$ (38 µmol metal in 0.15 g IL, 70 °C, 20 h) and histogram of size distribution. The mean particle diameter is 8.4 ± 1.6 nm.
NMR spectra of the ionic liquid [CNC$_3$MMIM]NTf$_2$

SI-Figure 8: 1H-NMR (300 MHz, Acetone-d$_6$) of the [CNC$_3$MMIM]NTf$_2$ phase of a)pure IL, b) after the synthesis of Ni-NPs, c) after the hydrogenation reaction of diphenylacetylene (30 °C, 4 bar H$_2$, 16 h).

SI-Figure 9: 13C-APT-NMR (75 MHz, Acetone-d$_6$) of the [CNC$_3$MMIM]NTf$_2$ phase of a)pure IL, b) after the synthesis of Ni-NPs, c) after the hydrogenation reaction of diphenylacetylene (30 °C, 4 bar H$_2$, 16 h).
SI-Figure 10: 19F-NMR (282 MHz, Acetone-d_6) of the [CNC$_3$MMIM]NTf$_2$ phase of a) pure IL, b) after the synthesis of Ni-NPs, c) after the hydrogenation reaction of diphenylacetylene (30 °C, 4 bar H$_2$, 16 h).
Determination of active catalyst surface and turn over number (TON)

The active catalyst surface was determined using the magical number approach considering Ni(0)-NPs in a zero oxidation state with a spherical and an approximately icosahedron shape of the nanoparticles. Using equations (1) and (2)7 with \(N_A\) as the Avogadro number with 6.02214·1023, \(\rho\) as the density of nickel with 8.908 g/cm3, \(A_r\) as the weight of one nickel atom with 58.6934 g/mol and \(D\) as mean the particle diameter of 7.8 ± 1.1 nm determined by TEM analysis the Volume of one nickel particle was determined to be 248 nm3. This results in approximately 22710 atoms per nickel particle.

\[
N = \frac{N_A \rho V}{A_r} \quad (1)
\]
\[
V = \frac{4}{3} \pi \cdot \left(\frac{D}{2}\right)^3 \quad (2)
\]
\[
G_n = \frac{1}{3} (2n + 1) \cdot (5n^2 + 5n + 3) \quad (3)
\]
\[
S_n = 10n^2 + 2 \quad (4)
\]

Using equation (3) and (4) by Teo and Sloane8 with \(G_n\) as the total number of particles and \(S_n\) as the number of surface particles, the number of shells \(n\) for the synthesised nickel nanoparticle is about 18 which leads to a 14.3 % atoms on the surface of the nickel nanoparticle. These surface atoms are considered as the active species in heterogeneous catalysed reactions. The turn over number (TON) was calculated using equation (5) with \(n\) as amount of product and catalyst surface respectively.

\[
TON = \frac{n_{\text{product}}}{n_{\text{catalyst surface}}} \quad (5)
\]

References