Ruthenium-Catalysed C-H Silylation of Unprotected Gramines, Tryptamines and Their Congeners

Karthik Devaraj, Carina Sollert, Carmen Juds, Paul J. Gates, Lukasz T. Pilarski*

Supporting Information

Table of Contents

1. General Information 2
2. Procedures for the synthesis of new gramines 3
 a. Method A 3
 b. Method B 3
 c. Analytical data for new gramines 4
3. Silylation of heteroarenes 6
 a. Reaction optimization 6
 b. General silylation procedure 6
 c. Analytical data for new silylated compounds 7
 d. Mechanistic experiments 16
 i. C-H/D exchange experiments using gramines and silanes 16
 ii. C-H/D exchange experiments using indoles and silanes 17
 iii. Si-H/D crossover experiments 18
 iv. Additional comments on the mechanism 19
4. References 20
5. Spectra 21
1. **General Information**

Unless otherwise stated, all reactions were performed under an atmosphere of Argon with magnetic stirring. Thin layer chromatography (TLC) was carried out using aluminium-backed plates coated with Kieselgel 60 (0.20 mm, UV 254) and visualized under ultraviolet light (λ = 254 nm) or with KMnO₄ staining solution. Purification by column chromatography was performed using Kiesel gel 60 H silica gel (particle size 0.063-0.100 mm).

¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Varian Unity 400 MHz (¹H 399.5MHz, ¹³C 100.6, ¹⁹F 376 MHz) or Varian Mercury Plus 300 MHz (¹H 300.0 MHz, ¹³C 75.5 MHz) spectrometer at ambient temperature. NMR data are reported as follows: Chemical shift in ppm, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Chemical shifts are reported in ppm and referenced indirectly to tetramethylsilane via the residual solvent signals. ¹H: CDCl₃ at 7.26, DMSO-d₆ at 2.50, C₆D₆ at 7.16 ppm; ¹³C: CDCl₃ at 77.0, DMSO-d₆ at 39.5, C₆D₆ at 128.1 ppm. ¹⁹F spectra were recorded on a Varian Unity 400 MHz spectrometer (376 MHz) and calibrated to an external standard of CFCl₃ at 0.00 ppm.

High resolution accurate Electron Ionisation (EI) mass spectrometry was performed on a VG Autospec mass spectrometer or, in the case of Electrospray Ionisation (ESI-MS), on a Bruker Daltonics microOTOF II mass spectrometer.

THF was freshly distilled from Na⁰/benzophenone and stored over 4Å molecular sieves under Argon. Toluene and 1,4-dioxane were pre-dried over 4Å molecular sieves and stored under Argon prior to use. Unless otherwise stated, all the other reagents, transition metal salts, silanes and norbornene were obtained commercially and used without further purification. The following known gramine derivatives were synthesized using previously reported literature procedures: 1-(benzo[b]thiophen-3-yl)-N,N-dimethylmethanamine,¹ N,N-dimethyl-1-(thiophen-3-yl)methanamine,² 1-(6-chloro-1H-indol-3-yl)-N,N-dimethylmethanamine.³ 3-(1H-Indol-3-yl)propan-1-amine was obtained commercially but found to contain water as an impurity. Prior to its use it was dissolved in CH₂Cl₂ (20 mL/g) and dried over MgSO₄. The solution was filtered through a glass frit and concentrated under reduced pressure to give the dry starting material.
2. Procedures for the synthesis of new gramines

2a. Method A:

Based on a modified literature procedure.4

In a two necked round bottom flask equipped with a magnetic stirring bar, formaldehyde solution 37% wt. in H\textsubscript{2}O (1.1 equiv.) was taken up in a mixture of 1,4-dioxane (2.0 mL) and glacial acetic acid (3.5 mL). The mixture was cooled to 0 °C before dimethylamine solution 40% wt. in H\textsubscript{2}O (1.1 equiv.) and the indicated indole (1.0 equiv.) were added. The resulting reaction mixture was stirred at 0 °C for 2 h, allowed to warm up to rt and stirred for 20 h. Water (4.0 mL), charcoal (150 mg) and Celite (150 mg) were added and the mixture was stirred for 10 minutes and filtered through a pad of Celite. The filtrate was adjusted to pH 8-9 by addition of aqueous NaOH solution (2N) and then extracted with CH\textsubscript{2}Cl\textsubscript{2} (30 mL × 3). The combined organic extracts were dried (MgSO\textsubscript{4}) and concentrated under reduced pressure. The product was purified by column chromatography using CH\textsubscript{2}Cl\textsubscript{2}/MeOH/NH\textsubscript{3} (28% wt. in H\textsubscript{2}O) (100:5:1) as the eluent.

2b. Method B:

Based on a modified literature procedure.5

A 20 mL round bottom flask equipped with a magnetic stirring bar under an argon atmosphere, was charged with trimethylamine (2.0 equiv.), EtOH (4.5 mL), dimethylamine hydrochloride (2.0 equiv.), titanium(IV) isopropoxide (2.0 equiv.) and the indicated heteroarene (1.0 equiv.). The reaction was allowed to stir at rt for 10 h. NaBH\textsubscript{4} (1.5 equiv.) was added and allowed to stir at rt for 10 h. The reaction was quenched by the addition of aqueous ammonia solution (28% wt. in H\textsubscript{2}O, 15 mL) leading to the formation of a thick precipitate. The suspension was filtered through a glass frit and the precipitate was washed with dichloromethane. The filtrate was dried (MgSO\textsubscript{4}) and concentrated under reduced pressure and purified by column chromatography using CH\textsubscript{2}Cl\textsubscript{2}/MeOH/NH\textsubscript{3} (28% wt. in H\textsubscript{2}O) (100:5:1) as the eluent.
2c. Analytical data for new gramines:

1-(1H-benzo[g]indol-3-yl)-N,N-dimethylmethanamine (Method B)

Yield = 0.482 g, 72% (based on 3.0 mmol of 1H-benzo-indole-3-carbaldehyde). Colourless solid. Rf = 0.1 (CH2Cl2:MeOH:NH4OH = 10.0:0.5:0.1). 1H NMR (400 MHz, DMSO-d6): δ 11.87 (br s, 1H), 8.35 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H), 7.51 (t, J = 8.1 Hz, 1H), 7.43 (d, J = 8.6 Hz, 1H), 7.38 (t, J = 8.1Hz, 1H), 7.30 (d, J = 2.4 Hz, 1H), 3.61 (s, 2H), 2.18 (s, 6H).

13C NMR (100 MHz, DMSO-d6): δ 130.7, 129.7, 128.3, 125.1, 123.4, 123.3, 122.5, 122.1, 120.6, 119.8, 119.0, 113.6, 54.4, 44.9. HRMS-EI calcd for C16H16N2 [M+]: 224.1313, found 224.1310.

Methyl 3-((dimethylamino)methyl)-1H-indole-6-carboxylate (Method A)

Yield = 0.375 g, 46% (based on 3.5 mmol of methyl 1H-indole-6-carboxylate). Colorless solid. Rf = 0.2 (CH2Cl2/MeOH/NH4OH = 10.0:1.0:0.1). 1H NMR (400 MHz, CDCl3): δ 9.22 (br s, 1H), 8.08 (s, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 2.1 Hz, 1H), 3.92 (s, 3H), 3.65 (s, 2H), 2.30 (s, 6H).

13C NMR (100 MHz, CDCl3): δ 168.2, 135.6, 131.4, 127.3, 123.5, 120.5, 118.7, 113.6, 113.3, 54.2, 51.9, 45.2. HRMS-EI calcd for C16H16N2O2 [M+]: 232.1212, found 232.1216.

N,N-dimethyl-1-(5-nitro-1H-indol-3-yl)methanamine (Method A)

Yield = 0.245 g, 28% (based on 4.0 mmol of 5-nitro-1H-indole). Yellow solid. Rf = 0.1 (CH2Cl2/MeOH/NH4OH = 10.0:1.0:0.1). 1H NMR (400 MHz, DMSO-d6): δ 11.66 (br s, 1H), 8.58 (d, J = 1.8 Hz, 1H), 7.98 (dd, J = 9.0, 1.8 Hz, 1H), 7.52 (d, J = 9.0 Hz, 1H), 7.49 (s, 1H), 3.58 (s, 2H), 2.16 (s, 6H).

13C NMR (100 MHz, DMSO-d6): δ 140.2, 139.7, 128.1, 126.7, 116.5, 116.4, 114.9, 111.9, 54.2, 44.9. HRMS-ESI calcd for C16H16N2O2 [M+H]+: 220.1081, found 220.1085.

1-(6-fluoro-1H-indol-3-yl)-N,N-dimethylmethanamine (Method A)

Yield = 0.684 g, 59% (based on 6.0 mmol of 6-fluoro-1H-indole). Colourless solid. Rf = 0.3 (CH2Cl2/MeOH/NH4OH = 10.0:1.0:0.1). 1H NMR (400 MHz, CDCl3): δ 8.70 (br s, 1H), 7.59 (dd, J = 8.6, 5.4 Hz, 1H), 7.05 (d, J = 1.4 Hz, 1H), 6.99 (dd, J = 9.7, 2.1 Hz, 1H), 6.87 (td, J = 9.7, 2.1 Hz, 1H), 3.62 (s, 2H), 2.30 (s, 6H).

13C NMR (100 MHz, CDCl3): δ 159.9 (d, JCF = 237.3 Hz), 136.1 (d, JCF = 12.4 Hz), 124.4, 124.0 (d, JCF = 3.5 Hz), 119.9 (d, JCF = 10.2 Hz), 113.0, 108.2 (d, JCF = 24.5 Hz), 97.3 (d, JCF =
26.0 Hz), 54.4, 45.2. 19F NMR (376 MHz, CDCl$_3$): δ –(121.53 – 121.60) (m). HRMS-ESI calcd for C$_{11}$H$_{12}$NO [M+H]$^+$: 193.1136, found 193.1135.

1-(benzofuran-2-y1)-N,N-dimethylmethanamine (Method B)

Yield = 0.046 g, 53% (based on 0.5 mmol benzofuran-2-carbaldehyde). Yellow oil. R$_f$ = 0.8 (CH$_2$Cl$_2$/MeOH = 3:2). 1H NMR (400 MHz, CDCl$_3$): δ 7.51 (d, J = 7.3 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.27 – 7.15 (m, 2H), 6.57 (s, 1H), 3.61 (s, 2H), 2.32 (s, 6H). 13C NMR (100 MHz, CDCl$_3$): δ 155.1, 155.1, 128.3, 123.8, 122.6, 120.6, 111.2, 105.2, 56.4, 45.2. HRMS-ESI calcd for C$_{11}$H$_{13}$NO [M]$^+$: 175.0997, found 175.0999.

1-(1H-indol-3-y1-2-deutero)-N,N-dimethylmethanamine (Method A)

Yield = 0.639 g, 73% (based on 5.0 mmol of 2-deutero-1H-indole). Colourless solid. R$_f$ = 0.2 (CH$_2$Cl$_2$/MeOH/NH$_4$OH = 10.0:0.5:0.1). 1H NMR (400 MHz, CDCl$_3$): δ 9.21 (br s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.21 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 8.0 Hz, 1H), 3.72 (s, 2H), 2.37 (s, 6H). δ. 13C NMR (100 MHz, CDCl$_3$): δ 136.1, 127.8, 123.9 (t), 121.6, 119.3, 118.9, 112.2, 111.2, 54.2, 45.1. HRMS-ESI calcd for C$_{11}$H$_{13}$DN$_2$ [M]$^+$: 175.1220, found 175.1223.
3. Silylation of heteroarenes

3a. Reaction Optimisation

Table S1. Optimisation using gramine.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (mol%)</th>
<th>equiv. silane</th>
<th>equiv. nbe</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>[Ir(µ-OMe)COD]₂ (5)</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>RuCl(PPh₃)₃ (5)</td>
<td>5</td>
<td>5</td>
<td>0 (34)²</td>
</tr>
<tr>
<td>3</td>
<td>Ru₂(CO)₁₂ (5)</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>RuH₂(PPh₃)₄ (5)</td>
<td>5</td>
<td>5</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>RuH₂(CO)(PPh₃)₃ (5)</td>
<td>3</td>
<td>3</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>RuH₂(CO)(PPh₃)₃ (5)</td>
<td>5</td>
<td>5</td>
<td>85 (83)⁵</td>
</tr>
<tr>
<td>7</td>
<td>RuH₂(CO)(PPh₃)₄ (2.5)</td>
<td>5</td>
<td>5</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>RuH₂(CO)(PPh₃)₄ (2.5)</td>
<td>5</td>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>RuH₂(CO)(PPh₃)₃ (5)</td>
<td></td>
<td>0</td>
<td>traces</td>
</tr>
</tbody>
</table>

⁠a⁠ 4,4’-di-tert-butylbipyridine ligand (10 mol%), THF, 80 °C, 24 h. ⁠b⁠ 3-Methylindole formed in 34% yield. ⁠c⁠ 3 g (17.2 mmol) scale of 1a. ⁠d⁠ Reaction time = 16 h. ⁠e⁠ Reaction performed under air in refluent xylene as solvent.

3b. General procedure for silylation reaction

A reaction tube equipped with a Young’s tap and a magnetic stirring bar was charged with the appropriate heteroarene substrate (0.5 mmol), RuH₂(CO)(PPh₃)₃ (0.023 g, 0.025 mmol) and then evacuated and backfilled with Argon three times. Under a positive flow of Argon, norbornene (0.235 g, 2.5 mmol), toluene (0.25 mL) and hydrosilane (2.5 mmol) were added. Unless indicated otherwise, the reaction mixture was heated for 20 h at 135 °C, cooled to rt and purified directly by silica gel chromatography using the listed solvent system.
3c. Analytical data for new silylated compounds

1-(2-(dimethyl(phenyl)silyl)-1H-indol-3-yl)-N,N-dimethylanemine (2a)

Yield = 0.131 g, 85%. Brown oil, solidifies on standing. Rf = 0.5 (CH$_2$Cl$_2$/MeOH = 20:1). 1H NMR (400 MHz, CDCl$_3$): δ 7.85 (br s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.71 – 7.64 (m, 2H), 7.53 – 7.43 (m, 3H), 7.32 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 8.0, 7.5 Hz, 1H), 7.14 (dd, J = 8.0, 7.5 Hz, 1H), 3.65 (s, 2H), 2.23 (s, 6H), 0.73 (s, 6H). 13C NMR (100 MHz, CDCl$_3$): δ 138.0, 137.3, 134.2, 133.2, 129.5, 129.2, 128.1, 123.8, 122.3, 119.7, 119.2, 110.7, 55.2, 45.3. -1.9. HRMS-EI calcd for C$_{16}$H$_{24}$N$_2$Si [M]$^+$: 308.1712, found 308.1709.

N,N-dimethyl-1-(2-(triphenylsilyl)-1H-indol-3-yl)ethanamine (2b)

Yield = 0.192 g, 89%. Colourless solid. Rf = 0.5 (CH$_2$Cl$_2$/MeOH = 20:1). 1H NMR (400 MHz, CDCl$_3$): δ 8.01 (d, J = 7.9 Hz, 1H), 7.98 (br s, 1H), 7.66 (d, J = 6.9 Hz, 6H), 7.48 (t, J = 7.2 Hz, 3H), 7.42 (dd, J = 7.2, 6.9 Hz, 6H), 7.30 (d, J = 8.2 Hz, 1H), 7.21 (dd, J = 8.2, 7.5 Hz, 1H), 7.15 (dd, J = 7.9, 7.5 Hz, 1H) 3.56 (s, 2H), 1.91 (s, 6H). 13C NMR (100 MHz, CDCl$_3$): δ 138.7, 136.2, 136.0, 133.0, 130.2, 128.9, 128.6, 128.3, 123.2, 120.7, 120.0, 111.0, 54.7, 44.2. HRMS-EI calcd for C$_{20}$H$_{28}$N$_2$Si [M]$^+$: 432.2022, found 432:2025.

N,N-dimethyl-1-(2-(methyldiphenylsilyl)-1H-indol-3-yl)ethanamine (2c)

Yield = 0.152 g, 82%. Pale yellow solid. Rf = 0.3 (CH$_2$Cl$_2$/MeOH = 20:0:1.0). 1H NMR (300 MHz, CDCl$_3$): δ 7.90 (br s, 1H), 7.88 – 7.85 (m, 1H), 7.63 – 7.59 (m, 4H), 7.48 – 7.40 (m, 6H), 7.33 – 7.28 (m, 1H), 7.23 – 7.11 (m, 2H), 3.59 (s, 2H), 2.08 (s, 6H), 1.01 (s, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 138.3, 135.3, 135.0, 131.7, 129.7, 129.0, 128.1, 128.1, 122.6, 119.9, 119.5, 110.9, 54.9, 44.8. -3.0. HRMS-EI calcd for C$_{24}$H$_{30}$N$_2$Si [M]$^+$: 370.1865, found: 370.1867.

1-(2-(ethyl(dimethyl)silyl)-1H-indol-3-yl)-N,N-dimethylanemine (2d)

Yield = 0.095 g, 73%. Pale yellow solid. Rf = 0.4 (CH$_2$Cl$_2$/MeOH = 20:1). 1H NMR (400 MHz, CDCl$_3$): δ 8.27 (br s, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.20 (dd, J = 8.1, 7.4 Hz, 1H), 7.13 (dd, J = 7.9, 7.4 Hz, 1H), 3.78 (s, 2H), 2.34 (s, 6H), 1.04 – 1.00 (m, 3H), 0.93 – 0.87 (m, 2H), 0.42 (s, 6H). 13C NMR (100 MHz, CDCl$_3$): δ 138.2, 135.1, 129.0, 122.2, 121.2, 119.5, 119.3, 110.8, 54.9, 44.9, 7.6, 7.3. -2.9. HRMS-EI calcd for C$_{18}$H$_{26}$N$_2$Si [M]$^+$: 260.1709, found 260.1714.
N,N-dimethyl-1-(2-(triethylsilyl)-1H-indol-3-yl)methanamine (2e)

Yield = 0.072 g, 50%. Pale brown solid. Rf = 0.3 (CH₂Cl₂/Methanol = 20:1). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (br s, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.20 (dd, J = 8.1, 7.6 Hz, 1H), 7.12 (dd, J = 7.9, 7.6 Hz, 1H), 3.79 (s, 2H), 2.34 (s, 6H), 1.4 - 1.0 (m, 9H), 0.98 - 0.94 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 133.7, 129.0, 122.2, 121.4, 119.7, 119.3, 110.7, 55.1, 44.8, 7.4, 3.6. HRMS-ESI calcd for C₁₇H₂₉N₂Si [M+H]⁺: 289.2095, found 289.2084.

1-(2-(dimethyl(phenyl)silyl)-5-methoxy-1H-indol-3-yl)-N,N-dimethylmethanamine (2j)

Yield = 0.083 g, 49% Colourless solid. The yield could be improved to 0.101 g (60%) using 6 mol% of RuH₂(CO)(PPh₃)₃. Rf = 0.2 (CH₂Cl₂/Methanol = 20:1). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (br s, 1H), 7.60 (d, J = 6.2 Hz, 2H), 7.50 – 7.39 (m, 3H), 7.34 (s, 1H), 7.21 (d, J = 8.8 Hz, 1H), 6.85 (d, J = 8.8 Hz, 1H), 3.89 (s, 3H), 3.74 (s, 2H), 2.22 (s, 6H), 0.67 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 154.3, 136.8, 134.2, 133.4, 129.8, 129.1, 128.2, 113.6, 111.6, 100.9, 76.5, 56.1, 54.4, 44.1, -1.9. HRMS-ESI calcd for C₂₀H₂₆N₂O₃Si [M⁺]: 338.1814, found 338.1808.

1-(5-methoxy-2-(methyldiphenylsilyl)-1H-indol-3-yl)-N,N-dimethylmethanamine (2k)

Yield = 0.140 g, 70%. Colourless solid. Rf = 0.2 (CH₂Cl₂/Methanol = 20:1:10). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (br s, 1H), 7.60 – 7.58 (m, 4H), 7.47 – 7.39 (m, 6H), 7.28 (s, 1H), 7.17 (d, J = 8.8 Hz, 1H), 6.87 (ddd, J = 8.8, 2.4, 0.7 Hz, 1H), 3.89 (s, 3H), 3.49 (s, 2H), 2.04 (s, 6H), 0.98 – 0.97 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 153.9, 136.8, 134.2, 133.4, 129.8, 129.1, 128.2, 113.6, 111.6, 100.9, 76.5, 56.1, 54.4, 44.1, -1.9. HRMS-ESI calcd for C₂₅H₂₈N₂O₃Si [M⁺]: 400.1971, found 400.1982.

1-(5-methoxy-2-(triphenylsilyl)-1H-indol-3-yl)-N,N-dimethylmethanamine (2l)

Yield = 0.208 g, 90%. Yellow solid. Rf = 0.4 (CH₂Cl₂/Methanol/NH₄OH = 10:0:1:0:1). ¹H NMR (400 MHz, CDCl₃): δ 7.86 (br s, 1H), 7.75 – 7.69 (m, 6H), 7.54 – 7.40 (m, 10H), 7.21 (d, J = 8.8 Hz, 1H), 6.92 (dd, J = 8.8, 2.5 Hz, 1H), 3.91 (s, 3H), 3.44 (s, 2H), 1.90 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 136.2, 134.0, 133.4, 129.9, 129.6, 128.1, 113.6, 111.5, 101.9, 55.9, 55.2, 45.0, -3.1. HRMS-ESI calcd for C₃₀H₃₁N₂O₃Si [M⁺]: 463.2200, found 463.2200.
1-(2-(dimethyl(phenyl)silyl)-1H-benzo[g]indol-3-yl)-N,N-dimethylmethanamine (2m)

Yield = 0.066 g, 37%. Colourless solid. Rf = 0.4 (CH2Cl2/MeOH = 20:1).

1H NMR (400 MHz, CDCl3): δ 8.54 (br s, 1H), 7.97 – 7.84 (m, 3H), 7.73 – 7.64 (m, 2H), 7.53 – 7.38 (m, 6H), 3.69 (s, 2H), 2.23 (s, 6H), 0.74 (s, 6H).

13C NMR (100 MHz, CDCl3): δ 137.4, 134.2, 132.9, 131.4, 130.7, 129.6, 128.8, 128.1, 127.8, 125.2, 124.0, 121.5, 120.3, 119.7, 119.4, 55.2, 45.2, -1.8. HRMS - EI calcd for C23H26N2Si [M]+: 358.1865, found: 358.1861.

N,N-dimethyl-1-(2-(triphenylsilyl)-1H-benzo[g]indol-3-yl)methanamine (2n)

Yield = 0.126 g, 88% (based on 0.3 mmol 1H-benzo[g]indol-3-yl-N,N-dimethylmethanamine). Colourless solid. Rf = 0.5 (CH2Cl2/MeOH = 20:1). 1H NMR (400 MHz, CDCl3): δ 8.64 (br s, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.92 (dd, J = 7.5, 1.6 Hz, 1H), 7.75 (dd, J = 7.5, 1.2 Hz, 1H), 7.72 – 7.70 (m, 6H), 7.54 – 7.41 (m, 12H), 3.57 (s, 2H), 1.92 (s, 6H).

13C NMR (100 MHz, CDCl3): δ 136.2, 135.9, 133.9, 133.1, 131.0, 130.2, 128.8, 128.6, 128.3, 125.4, 124.5, 121.3, 120.9, 120.3, 119.4, 54.8, 44.2. HRMS - ESI calcd for C33H31N2Si [M+H]+: 483.2251, found: 483.2245.

1-(6-chloro-2-(triphenylsilyl)-1H-indol-3-yl)-N,N-dimethylmethanamine (2o)

Yield = 0.117 g, 50%. Colourless solid. Rf = 0.3 (CH2Cl2/MeOH = 95:5).

1H NMR (400 MHz, CDCl3): δ 7.97 (br s, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.68 (dd, J = 7.8, 1.2 Hz, 6H), 7.52 – 7.42 (m, 9H), 7.29 (d, J = 1.6 Hz, 1H), 7.11 (dd, J = 8.5, 1.6 Hz, 1H), 3.51 (s, 2H), 1.90 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 138.9, 136.2, 135.0, 132.8, 130.2, 129.1, 128.3, 127.8, 127.5, 121.7, 120.5, 110.8, 54.9, 44.4. HRMS - EI calcd for C29H27N2SiCl [M]+: 466.1632, found: 466.1639.

1-(6-fluoro-2-(triphenylsilyl)-1H-indol-3-yl)-N,N-dimethylmethanamine (2p)

Yield = 0.106 g, 47%. Yellow solid. Rf = 0.3 (CH2Cl2/MeOH = 95:5).

1H NMR (400 MHz, CDCl3): δ 7.95 – 7.91 (m, 2H), 7.68 (dd, J = 7.9, 1.3 Hz, 6H), 7.52 – 7.41 (m, 9H), 6.97 (dd, J = 9.5, 2.1 Hz, 1H), 6.91 (dt, J = 9.5, 2.1 Hz, 1H), 3.50 (s, 2H), 1.90 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 160.6 (d,
$J_{CF} = 239.6$ Hz), 138.6 ($d, J_{CF} = 12.3$ Hz), 136.2, 133.0, 130.1, 128.2, 125.7, 121.8 ($d, J_{CF} = 10.2$ Hz), 108.7 ($d, J_{CF} = 24.5$ Hz), 97.0 ($d, J_{CF} = 25.8$ Hz), 55.1, 44.5. 19F NMR (376 MHz, CDCl$_3$): δ -119.9 (broad). HRMS-EI calcd for C$_{29}$H$_{37}$N$_2$SiF $[M]^+$: 450.1928, found: 450.1934.

(2-(dimethyl(phenyl)silyl)-1H-indol-3-yl)methanamine (3)

```
+H NMR (400 MHz, CDCl$_3$): $\delta$ 7.84 (br s, 1H), 7.69 ($d, J = 7.9$ Hz, 1H), 7.64 - 7.58 (m, 2H), 7.48 - 7.37 (m, 3H), 7.32 ($d, J = 8.1$ Hz, 1H), 7.19 ($dd, J = 8.1, 7.6$ Hz, 1H), 7.12 ($dd, J = 7.9, 7.6$ Hz, 1H), 4.02 (s, 2H), 1.49 (s, 2H), 0.68 (s, 6H). $^{13}$C NMR (100 MHz, CDCl$_3$): $\delta$ 138.3, 136.8, 134.0, 132.0, 129.8, 128.2, 128.0, 127.6, 122.6, 119.5, 118.6, 111.0, 37.6, -1.7. HRMS-EI calcd for C$_{17}$H$_{32}$N$_2$Si $[M]^+$: 280.1396, found 280.1392.
```

2-(2-(dimethyl(phenyl)silyl)-1H-indol-3-yl)ethan-1-amine (4a)

```
+H NMR (400 MHz, CDCl$_3$): $\delta$ 7.84 (br s, 1H), 7.66 - 7.56 (m, 3H), 7.48 - 7.36 (m, 3H), 7.30 ($d, J = 8.1$ Hz, 1H), 7.17 ($dd, J = 8.1, 7.5$ Hz, 1H), 7.08 ($dd, J = 7.9, 7.5$ Hz, 1H), 2.94 (s, 4H), 1.79 (s, 2H), 0.67 (s, 6H). $^{13}$C NMR (100 MHz, CDCl$_3$): $\delta$ 138.4, 137.0, 134.2, 132.1, 129.8, 128.9, 128.2, 123.2, 122.5, 119.3, 119.1, 111.0, 43.4, 30.3, -1.6. HRMS-EI calcd for C$_{18}$H$_{33}$N$_2$Si $[M]^+$: 294.1552, found 294.1554.
```

2-(2-(triethylsilyl)-1H-indol-3-yl)ethan-1-amine (4b)

```
+H NMR (400 MHz, CDCl$_3$): $\delta$ 7.93 (br s, 1H), 7.64 ($d, J = 7.9$ Hz, 1H), 7.36 ($d, J = 8.1$ Hz, 1H), 7.17 ($dd, J = 8.1, 7.4$ Hz, 1H), 7.08 ($dd, J = 7.9, 7.4$ Hz, 1H), 3.03 (s, 4H), 2.23 (s, 2H), 1.05 - 0.96 (m, 9H), 0.94 - 0.88 (m, 6H). $^{13}$C NMR (100 MHz, CDCl$_3$): $\delta$ 138.5, 131.6, 128.9, 123.0, 122.2, 119.0, 118.9, 110.8, 43.7, 30.6, 7.4, 3.8. HRMS-EI calcd for C$_{19}$H$_{36}$N$_2$Si $[M]^+$: 274.1865, found: 274:1866.
```

3-(1-(triethylsilyl)-1H-indol-3-yl)propan-1-amine (5)

```
+H NMR (400 MHz, CDCl$_3$): $\delta$ 7.57 ($d, J = 7.6$ Hz, 1H), 7.46 ($d, J = 8.0$ Hz, 1H), 7.20 - 7.07 (m, 2H), 7.02 (s, 1H), 6.85 (s, 2H), 2.96 (s, 2H), 2.85 (t, $J = 7.2$ Hz, 2H), 2.21 (t, $J = 7.2$ Hz, 2H), 1.03 (t, $J = 7.3$ Hz, 6H), 1.00 - 0.91 (m, 9H). $^{13}$C NMR (100 MHz, CDCl$_3$): $\delta$
```
140.9, 130.7, 127.8, 121.4, 119.4, 118.8, 116.1, 112.9, 39.9, 29.1, 22.2, 6.7, 4.3. HRMS-EI calcd for C_{18}H_{29}N_{2}Si [M]+: 289.2095, found 289.2093.

Methyl 2-(dimethyl(phenyl)silyl)-1H-indole-3-carboxylate (6)

Yield = 0.033 g, 21%. Colourless solid. R_f = 0.5 (petroleum ether/EtOAc = 10:1). ^1H NMR (400 MHz, CD_{6}D_{6}): δ 8.52 (app. d, J = 8.1 Hz, 1H, ^4J is not resolved), 7.84 (br s, 1H), 7.53 – 7.45 (m, 2H), 7.28 – 7.18 (m, 4H), 7.09 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 6.61 (app. d, J = 8.2 Hz, 1H, ^4J is not resolved), 3.56 (s, 3H), 0.73 (s, 6H).

13C NMR (100 MHz, CD_{6}D_{6}): δ 166.6, 145.2, 138.4, 137.2, 134.9, 130.1, 128.7, 128.2, 123.5, 122.5, 122.3, 117.2, 111.7, 50.6, -2.9. HRMS-EI calcd for C_{18}H_{19}NO_{2}Si [M]+: 309.1185, found 309.1196.

Methyl 2-(2-(dimethyl(phenyl)silyl)-1H-indol-3-yl)acetate (7)

Yield = 0.062 g, 38%. Pale yellow solid. R_f = 0.4 (petroleum ether/EtOAc = 10:1). ^1H NMR (300 MHz, CDCl_3): δ 7.88 (br s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.49 – 7.39 (m, 3H), 7.31 (d, J = 8.1 Hz, 1H), 7.19 (dd, J = 8.1, 7.4 Hz, 1H), 7.12 (dd, J = 7.9, 7.4 Hz, 1H), 3.78 (s, 2H), 3.61 (s, 3H), 0.67 (s, 6H). ^13C NMR (75 MHz, CDCl_3): δ 172.2, 138.1, 136.4, 134.2, 133.1, 129.8, 128.8, 128.2, 122.7, 119.7, 119.1, 117.9, 111.0, 51.8, 31.9, -1.9. HRMS-EI calcd for C_{19}H_{21}NO_{2}Si [M]+: 323.1342, found 323.1335.

Methyl 2-(1-(dimethyl(phenyl)silyl)-1H-indol-3-yl)acetate (7')

Yield = 0.039 g, 24%. Pale yellow solid. R_f = 0.5 (petroleum ether/EtOAc = 10:1). ^1H NMR (300 MHz, CDCl_3): δ 7.62 (d, J = 7.8 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.46 – 7.36 (m, 3H), 7.22 (d, J = 8.0 Hz, 1H), 7.17 – 7.03 (m, 3H), 3.77 (s, 2H), 3.71 (s, 3H), 0.79 (s, 6H). ^13C NMR (75 MHz, CDCl_3): δ 172.4, 140.6, 135.2, 133.8, 130.9, 130.3, 129.2, 128.2, 121.7, 119.9, 119.0, 113.5, 110.6, 51.9, 31.3, -1.4. HRMS-EI calcd for C_{19}H_{21}NO_{2}Si [M]+: 323.1342, found 323.1346.

N-methyl-2-(2-(triethylsilyl)-1H-indol-3-yl)ethan-1-amine (10)
Yield = 0.744 g, 58%. (based on 4.5 mmol of 2-(1H-indol-3-yl)-N-methylethan-1-amine, 10 equiv. of HSiEt₃ used). Brown solid. Rₐ = 0.4 (CH₂Cl₂:MeOH:NH₄OH = 10.0:1:0.0:1). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (br s, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.22 – 7.15 (m, 1H), 7.13 – 7.05 (m, 1H), 3.06 (t, J = 7.6 Hz, 2H), 2.90 (t, J = 7.6 Hz, 2H), 2.49 (s, 3H), 1.92 (s, 1H), 1.03 – 0.99 (m, 9H), 0.95 – 0.86 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 131.4, 128.7, 122.8, 122.1, 119.0, 118.8, 110.7, 53.2, 36.0, 26.3, 7.4, 3.7. HRMS-ESI calcd for C₁₇H₂₈N₂Si [M+H]⁺: 289.2100, found 289.2093.

2-((2-(dimethyl(phenyl)silyl)-5-methoxy-1H-indol-3-yl)ethan-1-amine (11a)

Yield = 0.123 g, 76%. Pale solid. Rₐ = 0.2 (CH₂Cl₃/MeOH/NH₄OH = 10.0:1.0:0.1). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (br s, 1H), 7.63 – 7.55 (m, 2H), 7.45 – 7.34 (m, 3H), 7.18 (d, J = 8.8 Hz, 1H), 7.08 (d, J = 2.4 Hz, 1H), 6.83 (dd, J = 8.8, 2.4 Hz, 1H), 3.84 (s, 3H), 3.21 (br s, 2H), 3.08 – 2.80 (m, 4H), 0.66 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 154.0, 136.7, 134.1, 133.6, 133.2, 129.8, 129.1, 128.2, 121.8, 113.3, 111.7, 100.3, 56.0, 42.6, 28.8, -1.7. HRMS-ESI calcd for C₁₉H₂₅N₂OSi [M+H]⁺: 325.1731, found 325.1718.

2-((2-(dimethylphenyl)silyl)-5-methyl-1H-indol-3-yl)ethan-1-amine (11b)

Yield = 0.096 g, 62%. Pale solid. Rₐ = 0.3 (CH₂Cl₃/MeOH/NH₄OH = 10.0:1.0:0.1). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (br s, 1H), 7.66 – 7.57 (m, 2H), 7.50 – 7.37 (m, 4H), 7.21 (dd, J = 8.3, 1.0 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 2.93 (s, 4H), 2.46 (s, 3H), 1.45 (br s, 2H), 0.68 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 137.1, 136.7, 134.1, 132.0, 129.6, 129.1, 129.8, 128.4, 128.1, 124.2, 122.8, 118.5, 110.6, 43.5, 30.5, 21.4, -1.6. HRMS-ESI calcd for C₁₉H₂₅N₂Si [M+H]⁺: 309.1782, found 309.1771.

1-((2-(dimethylphenyl)silyl)benzo[b]thiophen-3-yl)-N,N-dimethylmethanamine (12)

Yield = 0.124 g, 76%. Brown oil. Rₐ = 0.4 (CH₂Cl₃/MeOH = 100:1). ¹H NMR (400 MHz, CDCl₃): δ 8.14 – 8.02 (m, 1H), 7.96 – 7.82 (m, 1H), 7.69 – 7.57 (m, 2H), 7.46 – 7.31 (m, 5H), 3.57 (s, 2H), 2.05 (s, 6H), 0.78 – 0.68 (m, 6H).
\[^{13}C \text{ NMR} \ (100 \text{ MHz, CDCl}_3): \delta \ 143.3, 141.9, 141.5, 138.0, 136.4, 134.0, 129.2, 127.7, 124.2, 123.6, 123.1, 122.0, 57.4, 45.0, -0.8. \text{ HRMS-ESI} \ \text{calcd for C}_{19}\text{H}_{24}\text{NSSi [M+H]}^+: 326.1393, \text{found} \ 326.1394. \]

1-(3-(dimethyl(phenyl)silyl)benzofuran-2-y1)-N,N-dimethylmethanamine (13)

![Image of 1-(3-(dimethyl(phenyl)silyl)benzofuran-2-y1)-N,N-dimethylmethanamine](image)

Yield = 0.039 g, 25%. Brown oil. R\(_f\) = 0.4 (CH\(_2\)Cl\(_2\)/MeOH = 95:5). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \ 7.56 \text{ (dd, } J = 7.6, 1.6 \text{ Hz, 2H), 7.47 (d, } J = 8.2 \text{ Hz, 1H), 7.37 \text{ (dd, } J = 8.2, 7.3 \text{ Hz, 4H), 7.21 (d, } J = 7.4 \text{ Hz, 1H), 7.11 \text{ (t, } J = 7.6 \text{ Hz, 1H), 3.48 (s, 2H), 2.22 (s, 6H), 0.66 (s, 6H).} \)

\[^{13}C \text{ NMR (100 MHz, CDCl}_3): \delta \ 155.2, 138.2, 134.2, 134.1, 132.7, 129.5, 128.6, 128.1, 124.0, 122.5, 122.3, 111.2, 56.1, 45.2, -0.5.} \]

HRMS-ESI \calcd for C\(_{19}\)H\(_{24}\)NSSi [M+H]**: 310.1622, found 310.1616.

The reaction of N,N-dimethyl-1-(thiophen-3-yl)methanamine with dimethylphenylsilane gave a separable mixture of mono- and disilylated products, 15\(a\) and 15\(b\):
6H), 0.64 – 0.59 (m, 6H). 13C NMR (100 MHz, CDCl3): δ 138.1, 134.0, 130.8, 130.3, 129.2, 128.8, 127.7, 127.6, 58.7, 44.7, -1.0. HRMS-CI calcd for C15H23NSSi [M+H]+: 276.1242, found 276.1241.

1-(2,4-bis(dimethyl(phenyl)silyl)thiophen-3-yl)-N,N-dimethylmethanamine (15b)

Yield = 0.111 g, 54%. Brown oil. Rf = 0.6 (CH2Cl2/MeOH = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.60 – 7.50 (m, 4H), 7.42 – 7.30 (m, 7H), 3.29 (s, 2H), 1.99 (s, 6H), 0.61 (s, 6H), 0.59 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 143.1, 139.9, 138.8, 138.2, 138.0, 134.0, 133.9, 130.9, 129.2, 129.1, 127.8, 127.7, 58.9, 45.1, -0.9, -1.2. HRMS-CI calcd for C20H24NSSi2 [M+H]+: 410.1794, found 410.1791.

2-(triethylsilyl)-1H-indol-5-amine (16c)

Yield = 0.081 g, 33% (based on 1.0 mmol of 1H-indol-5-amine). Pale brown solid. Rf = 0.3 (petroleum ether/EtOAc = 2:1). 1H NMR (400 MHz, CDCl3): δ 7.99 (br s, 1H), 7.21 (d, J = 8.5 Hz, 1H), 6.97 (d, J = 2.2 Hz, 1H), 6.69 (dd, J = 8.5, 2.2 Hz, 1H), 6.59 – 6.58 (br m, 4H), 3.65 (br s, 2H), 1.08 – 0.98 (m, 6H), 0.92 – 0.77 (m, 6H). 13C NMR (100 MHz, CDCl3): δ 138.9, 136.1, 133.8, 129.5, 113.3, 111.2, 111.1, 105.2, 7.4, 3.5. HRMS-EI calcd for C30H31N2OSi [M+]: 246.1552, found 246.1555.

1-(triethylsilyl)-1H-indol-5-amine (16c')

Yield = 0.054 g, 22% (based on 1.0 mmol of 1H-indol-5-amine). Pale yellow solid. Rf = 0.5 (petroleum ether/EtOAc = 2:1). 1H NMR (400 MHz, CDCl3): δ 7.31 (d, J = 8.6 Hz, 1H), 7.12 (d, J = 3.1 Hz, 1H), 7.01 (dd, J = 2.3, 0.9 Hz, 1H), 6.68 (dd, J = 8.6, 2.3 Hz, 1H), 6.45 (dd, J = 3.1, 0.9 Hz, 1H), 3.97 (br s, 2H), 1.07 – 0.95 (m, 15H). 13C NMR (100 MHz, CDCl3): δ 138.5, 135.3, 132.3, 131.0, 113.2, 112.2, 106.2, 103.7, 6.7, 4.2. HRMS-EI calcd for C30H31N2OSi [M+]: 246.1552, found 246.1559.

4-chloro-2-(triethylsilyl)-1H-indole (16e)

Yield = 0.081 g, 40% (based on 1.0 mmol of 4-chloro-1H-indole). Pale brown oil. Rf = 0.5 (petroleum ether/EtOAc = 30:1). 1H NMR (400 MHz, CDCl3): δ 8.26 (br s, 1H), 7.32 – 7.30 (m, 1H), 7.15 – 7.06 (m, 2H), 6.86- 6.85 (m, 1H), 1.08 – 1.04 (m, 9H), 0.91-0.85 (m, 6H). 13C NMR (100 MHz, CDCl3): δ 139.4, 136.7, 127.5, 125.7, 122.6, 119.2, 110.6, 109.4, 7.4, 3.5. HRMS-EI calcd for C30H31N2OSi [M+]: 260.1054, found 260.1060.
6-Fluoro-2-(triethylsilyl)-1H-indole (16f)

Yield = 0.131 g, 53% (based on 1.0 mmol of 6-fluoro-1H-indole). Yellow oil. Rf = 0.5 (petroleum ether/EtOAc = 40:1). 1H NMR (400 MHz, CDCl$_3$): δ 8.06 (br s, 1H), 7.52 (dd, J = 8.6, 5.4 Hz, 1H), 7.08 (dd, J = 9.6, 2.2 Hz, 2H), 6.87 (ddd, J = 9.6, 8.6, 2.2 Hz, 1H), 6.71 (d, J = 2.1), 1.03 (t, J = 7.9 Hz, 9H), 0.84 (q, J = 7.9 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$): δ 160.5 (d, $J_{CF} = 239.4$ Hz), 138.6 (d, $J_{CF} = 12.4$ Hz), 136.2 (d, $J_{CF} = 3.51$ Hz), 125.3, 121.0 (d, $J_{CF} = 10.3$ Hz), 112.3, 108.3 (d, $J_{CF} = 24.7$ Hz), 96.0 (d, $J_{CF} = 25.0$ Hz), 7.4, 3.5. 19F NMR (376 MHz, CDCl$_3$): δ -121.3. HRMS-EI calcd for C$_{14}$H$_{30}$NFSi [M$^+$]: 249.1349, found 249.1348.
3d. Mechanistic experiments

3d.i. C-H/D exchange using gramines and silanes

The following experiments were performed under the general silylation conditions described on page S6. The extent of deuterium incorporation at the N1-H, C4-H and C7-H positions was determined by 1H NMR spectroscopy (CDCl$_3$) for the silylation product 2e and skatole. Skatole formation occurs as a result of gramine decomposition in a pathway competing with the silylation reaction. C2-Silylated skatole was not detected under these reaction conditions.

![Diagram of the reaction](image)

<table>
<thead>
<tr>
<th>H/D-Gram</th>
<th>H/D-SiEt$_3$</th>
<th>Silylation product</th>
<th>Skatole</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>yielda</td>
<td>C7-D</td>
<td>C4-D</td>
<td>N-D</td>
<td>CH$_3$b</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>D</td>
<td>66%</td>
<td>3%</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>H</td>
<td>22%</td>
<td>5%</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>H</td>
<td>18%</td>
<td>5%</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>D</td>
<td>17%</td>
<td>8%</td>
</tr>
<tr>
<td>5e</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table S2: Overview H/D-exchange experiments with Deuterium labelled substrates. The deuterium incorporation at the indicated positions of the reaction products are given in percent. aIsolated yield. bIntegral of resonance corresponding to the indicated group relative to C5-H and C6-H signals. cReaction time 3 h. dDetected by 1H NMRe and EI-MS.
3d.ii. C-H/D exchange experiments using indoles and silanes

A reaction between the respective indole substrate (0.5 mmol) and D-SiEt$_3$ (0.293 g, 2.5 mmol) was performed in accordance with the general procedure for silylation reactions (p. S6), except that the reaction temperature was 150 °C and the reaction time was 16 h. The crude reaction mixture was purified directly by column chromatography (solvent gradient EtOAc/PE 1:40 to 1:20). The extent of deuterium incorporation in the products was determined by 1H NMR (CDCl$_3$). The reaction mass balance was composed of intractable indole-containing by-products and Et$_3$Si-SiEt$_3$ (0.150 g). In the case of (b), a C2-alkylation product (22) was also isolated in 18% yield.

![Scheme S1: C-H/D-exchange experiments using indole substrates and D-SiEt$_3$. The deuterium incorporation at the indicated positions of the reaction products are given in percent relative to the C5-H and C6-H signals. All yields correspond to the isolated products.](image-url)
3d.iii Si-H/D crossover experiments

The following experiments were performed in pre-dried microwave vials under argon atmosphere. The vial was charged with RuH₂(CO)(PPh₃)₃ (0.008 mmol, 7.3 mg) and then evacuated and backfilled with argon three times. Norbornene (if appropriate), deuterio-triethylsilane (19 mg, 0.16 mmol) and dimethylphenyl hydrosilane (22 mg, 0.16 mmol) were added. The vial was sealed and the reaction mixture was kept at the indicated temperature (pre-warmed heating bath) for 3 h. The vial was quickly cooled on ice, opened and the crude mixture was diluted with CDCl₃ and directly analyzed by NMR. The extent of deuterium incorporation into both silanes was determined by ¹H NMR spectroscopy.

Table S3: Deuterium exchange among silanes. * The deuterium incorporation into both silanes was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture. † (Me₂PhSi)₂ was detected by ¹H NMR (9% spectroscopic yield) and by EI-MS. ‡ (Me₂PhSi)₂ was detected by ¹H NMR (12% spectroscopic yield) and by EI-MS. The corresponding (Et₃Si)₂ homocoupling product was not detected in any of these experiments.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>D-SiEt₃ + H-SiMe₂Ph</th>
<th>reagents</th>
<th>H/D-SiEt₃ + H/D-SiMe₂Ph</th>
<th>Deuterium incorporation*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ru [equiv]</td>
<td>norbornene [equiv]</td>
<td>Temp. [°C]</td>
<td>D-SiMe₂Ph</td>
</tr>
<tr>
<td>¹</td>
<td>0.05</td>
<td>0.05</td>
<td>135</td>
<td>58%</td>
</tr>
<tr>
<td>²</td>
<td>0.05</td>
<td>-</td>
<td>135</td>
<td>65%</td>
</tr>
<tr>
<td>³</td>
<td>-</td>
<td>-</td>
<td>135</td>
<td>0%</td>
</tr>
<tr>
<td>⁴</td>
<td>0.05</td>
<td>-</td>
<td>50</td>
<td>45%</td>
</tr>
<tr>
<td>⁵</td>
<td>0.05</td>
<td>-</td>
<td>rt</td>
<td>19%</td>
</tr>
</tbody>
</table>

Table S3: Deuterium exchange among silanes. * The deuterium incorporation into both silanes was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture. † (Me₂PhSi)₂ was detected by ¹H NMR (9% spectroscopic yield) and by EI-MS. ‡ (Me₂PhSi)₂ was detected by ¹H NMR (12% spectroscopic yield) and by EI-MS. The corresponding (Et₃Si)₂ homocoupling product was not detected in any of these experiments.
Additional comments on the mechanism

We summarise selected mechanistic insights on the basis of the experiments in sections 3d.i and 3d.ii:

1. Activation of C4-H was observed only in gramine (Table S2) and not indoles (Scheme S1a-c) and therefore requires the directing group at C3.

2. C7-H activation was observed for the reactions with gramines (Table S2). It was also observed for indole (20h) only if an amine (in this case specifically diethylamine) was added to the reaction mixture (Scheme S1, reactions (a) vs (b)). This suggests that a strongly donating amine ligand on Ru facilitates C7-H cleavage, and that in the case of gramines, this is obtained from the decomposition of gramine to skatole.

3. The experiments reported in Table S2 show slightly greater levels of C7-H/D exchange in the skatole than in the gramine products. This suggests that the bulk of the C2-silyl substituent in 2e/2e-d hinders C7-H activation, presumably by blocking Ru coordination to N1.

4. 20Me also underwent no C7-H/D exchange (Scheme S1c). It seems likely, therefore, that C7-H activation requires insertion of Ru into the N1-H bond, which the methyl group (or steric hindrance – as described above), inhibits.

5. The reaction between N-methylindole (20Me) and D-SiEt3 gave none of the corresponding C2-silylated product 23 (Scheme S1c). However, 15% C2-D incorporation was observed in the indole (20Me-d), indicating that C2-H activation occurs. Presumably, therefore, the N-methyl substituent is sufficiently sterically demanding to prohibit reductive elimination to produce the C2-Si bond.

6. That C2-H activation in 20Me occurs without any coordination available lends credence to the hypothesis that truly intermolecular C-H activation is possible for substrates without directing groups.

7. The presence of amines that do not facilitate the formation of 5- or 6-membered ruthenacycles also gave rise to increased levels of silylation at the pyrrolic nitrogen. For example, product 5 forms presumably because its directing group is too long to favour cycloruthenation at C2. Similarly, the amine groups of 16c’ and 20SiEt3-d or the corresponding starting materials (Scheme S1b) cannot effect cycloruthenation, and presumably activate Ru towards intermolecular reactions instead.

8. In all of the presented reactions, C2-H activation/silylation was favoured over other positions (e.g., for silylation: 12 vs 13 or 15a vs 15b; for deuterium incorporation: higher levels of C2-H/D over C3-H/D exchange were observed in every reaction in Scheme S1). The origins of this selectivity have not yet been elucidated for Ru-catalysed C-H silylation. However, it is plausible that activation of C2-H benefits from the proximate heteroatom, whose electronegativity lowers the C-H σ* LUMO energy, making oxidative addition to the Ru centre easier. For Rh-catalysed C-H silylation, Hartwig and Chang reported that electron-poor aryls are activated in preference over electron-rich aryls, consistent with transfer of electron-density from the metal to the substrate. Alternatively, as the C-H/D exchange appears to be reversible, C2-ruthenated intermediates/transition states are more stable.
4. References

5. Spectra
2b