A novel dual-emission fluorescent probe for simultaneous detection of H₂S and GSH

Hongliang Li,¹ Wen Peng,² Weipei Feng,¹ Yingxing Wang,¹ Guofeng Chen,¹ Shuxiang Wang,¹,b*, Shenhui Li,¹ Hongyan Li,¹ Kerang Wang,² and Jinchao Zhang,¹,b*

¹Key Laboratory of Chemical Biology of Hebei province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China

1. Materials and methods

1.1. Materials

All chemicals were purchased from Sigma-Aldrich and Aladdin reagent Co. (Shanghai, China) and used without further purification. Column chromatography was conducted over silica gel (200-300 mesh) obtained from the Qingdao Ocean Chemicals. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Solvents were purified and dried by standard methods prior to use. Double-distilled water was used throughout the experiments. In all experiments enantiomerically pure natural amino acids were used except for Hcy, which was used as the racemate.

1.2. Instruments

The fluorescence spectra and relative fluorescence intensity were measured with a Shimadzu RF-5301 spectrofluorimeter with a 10 mm quartz cuvette. The absolute fluorescence quantum yield was determined by an interacting sphere (Edinburgh Instruments FLS-980 fluorimeter) under appropriate excitation from a 150 W xenon lamp. Absorption spectra were recorded using a Shimadzu UV-2550 spectrophotometer. High-resolution mass spectra were recorded in negative mode with a HRMS apex ultra 7.0T US+ in electrospray ionization (ESI) mode. ¹H and ¹³C NMR spectra were recorded on a Bruker AVIII 600 NMR spectrometer, using tetramethylsilane (TMS) as the internal standard. The pH measurements were carried out on a REX-PHS-3C PH Meter. The absorbance for MTT analysis was recorded on a microplate spectrophotometer (Molecular Devices, VersaMax, USA). Fluorescence imaging experiments were performed on confocal microscope (Olympus, IX81, JPN).

2. Synthesis of probe 1

The probe 1 was synthesized from malonic acid, 2,4,6-trichlorophenol, DMF, POCl₃, and malononitrile by substitution, perkin, Vilsmeier-Haack, and Knoevenagel condensation reaction (as shown in Scheme S1).

* Corresponding author. Tel/fax: +86 312 507 9627. Email: jczhang6970@163.com
Tel/fax: +86 312 507 7373. Email: wsx@hbu.edu.cn
2.1 Bis(2,4,6-trichlorophenyl) malonate

Malonic acid (0.52 g, 5.0 mmol), 2,4,6-trichlorophenol (1.58 g, 8.0 mmol) and POCl₃ (1 mL, 1.645 g, 10.5 mmol) were added into the reactor (topped with a CaSO₄ drying tube) in a constant temperature oil bath at 100 °C. After stirring for 4 h with constant stirring, the reaction system was cooled to room temperature. Then the mixture was slowly poured into 75 mL CH₂Cl₂ and washed with iced, saturated NaHCO₃ solution (3×100 mL). The organic layer was then dried over Na₂SO₄ and concentrated to yield bis(2,4,6-trichlorophenyl) malonate as a white solid (1.75 g, 92.7% yield, and M.p 183.9-185.0 °C).

2.2 7-(Diethylamino)-4-hydroxy-coumarin

3-Diethylaminophenol (1.65 g, 10 mmol), bis(2,4,6-trichlorophenyl) malonate (4.63 g, 10 mmol) and dry toluene (10 mL) were added into the reactor. The mixture was heated brought to reflux with constant stirring for 2 h. Then the reaction mixture was cooled to room temperature and filtered. The resultant grey solid was washed with toluene and dried under high vacuum to generate 7-(diethylamino)-4-hydroxy-coumarin (1.63 g, 70.1% yield, M.p 155.2-156.8 °C).

2.3 7-(Diethylamino)-4-chloro-3-formyl-coumarin

Under nitrogen, fresh distilled DMF (2.8 mL) was added dropwise to POCl₃ (2.8 mL) at room temperature and stirred for 30 min to obtain a red solution. Then a portion of 7-(diethylamino)-4-hydroxy-coumarin (2.33 g, 10 mmol, dissolved in 13.2 mL DMF) was added dropwise to the above solution and yield a scarlet suspension. After the mixture was stirred at 60 °C for 12 h, it was poured into 100 mL of ice water. NaOH solution (20 %) was used to adjust the pH to obtain a large amount of precipitate. The crude product was subjected to column chromatography (silica: hexanes/EtOAc=1/1) to give 7-(diethylamino)-4-chloro-3-formyl-coumarin as an orange solid (0.83 g, 61.4% yield, M.p 138.2-139.3 °C). ¹H NMR (CDCl₃) δ ppm: 10.28 (s, 1H), 7.82 (d, J = 6.2 Hz, 2H), 6.69 (d, J = 6.2 Hz, 1H), 6.42 (d, J = 2.4 Hz, 1H), 3.50 (q, J = 7.2 Hz, 4H), 1.27 (t, J = 9.2 Hz, 6H).

2.4 2-((4-Chloro-7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)malononitrile (1)

To a stirred solution of 7-(diethylamino)-4-chloro-3-formyl-coumarin (560 mg, 2 mmol) and malononitrile (135 mg, 2 mmol) in CH₂Cl₂ (30 mL), triethylamine (1.0 mL) was added at room temperature under argon. The reaction mixture was stirred at room temperature for 3 h. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: CH₂Cl₂/PE=1/1) to afford 1 as a black brown solid (336 mg, 51.2% yield, M.p 174.6-175.8 °C). ¹H NMR (600 MHz, CDCl₃) δ ppm: 7.81 (s, 1H), 7.72 (d, J = 9.0 Hz, 1H), 6.72 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 6.46 (d, J = 2.4 Hz, 1H), 3.51 (q, J = 7.2 Hz, 4H), 1.28 (t, J = 7.2 Hz, 6H).
13C NMR (150 MHz, CDCl$_3$) δ ppm: 156.46, 156.13, 154.13, 153.01, 150.74, 129.13, 114.71, 111.94, 111.01, 109.48, 107.37, 96.71, 86.40, 45.50, 12.48. HRMS (ESI) m/z calcld for C$_{17}$H$_{14}$ClN$_3$O$_2$ [M+Na]$^+$: 350.06668, found: 350.06698.

3. Spectrometer Measurement

In a set of 10 mL volumetric tubes containing 1.0 mL phosphate buffer (10 mM, pH 7.4), 3.0 mL of DMF and 50 μL of probe 1 (1.6 mM), different concentrations of analytes were added and the reaction mixture was diluted to 10 mL with H$_2$O. The resulting solution was well-mixed and kept at 25 °C for 10 min, and then the absorption or fluorescence spectra were recorded. The fluorescence emission intensity was measured at the excitation wavelength of 390 or 515 nm.

Fig. S1 (A-D) Time-dependent absorption spectra of 1 (5 μM) in the presence of 10 equiv of H$_2$S (A), Cys (B), GSH (C), and Hcy (D) in DMF/phosphate buffer (3:7 V/V, 10 mM, pH 7.4) at r.t.
Fig. S2 Time-dependent fluorescence response of probe 1 (5 μM) toward 10 equiv of H₂S (A: excited at 515 nm, Slits: 5/5 nm) and GSH (B: excited at 430 nm, Slits: 10/10 nm) in PBS buffer (10 mM, pH 7.4) at r.t.

Fig. S3 Time-dependent fluorescence response of probe 1 (5 μM) toward 10 equiv of Cys, Hcy and GSH (A: excited at 515 nm, Slits: 5/5 nm) and GSH upon addition of 10 equiv of H₂S, Cys, and Hcy (B: excited at 430 nm, Slits: 10/10 nm) in PBS buffer (10 mM, pH 7.4) at r.t.

Fig. S4 Time-dependent fluorescence response of probe 1 (5 μM) toward 10 equiv of Cys and Hcy (A: excited at 430 nm, Slits: 10/10 nm) and 10 equiv of Cys and Hcy (B: excited at 515 nm, Slits: 5/5 nm) in PBS buffer (10 mM, pH 7.4) at r.t.
Fig. S5 The fluorescence increment of probe (5 μM) in the presence of H₂S (5 equiv) and GSH (10 equiv) at various pH values (5-9)

Fig. S6 Fluorescence intensity changes of probe (5 μM) upon addition of H₂S or GSH with various species in PBS buffer (10 mM, pH 7.4) at r.t.
A: 10 equiv. of H₂S and 20 equiv. of various amino acids biologically related Ala, Val, Leu, Ile, Pro, Phe, Trp, Met, Gly, Ser, Thr, Glu, Lys, Arg, Tyr, His, Asp, Glu, Asn, Cys, Hcy, and GSH
B: 10 equiv. of GSH and 20 equiv. of various amino acids biologically related Ala, Val, Leu, Ile, Pro, Phe, Trp, Met, Gly, Ser, Thr, Glu, Lys, Arg, Tyr, His, Asp, Glu, Asn, H₂S, Cys, and Hcy

4. MTT assay

The effect of probe 1 on cells viability was determined using the MTT assay. In brief, MCF-7 cells were seeded in 96 well culture plates at density of 2×10⁴ cells per well and incubated overnight. Then probe 1 was added to the wells to achieve final concentrations. Control wells were prepared by addition of culture medium. Wells containing culture medium without cells were used as blanks. At the end of incubation, 10 μL of MTT (5.0 mg/mL) was added into each well and incubation for another 4 h. Then, the supernatant was removed and 100 μL DMSO was added to each well for dissolve the MTT formazan. The optical density (OD) of formazan solutions produced was recorded on a microplate spectrophotometer (Molecular Devices, Versa Max, USA) at 570 nm. The cell viability was presented as the fold over the control group and was calculated according to the following formula: cell viability (%) = (OD_sample-OD_blank)/(OD_control-OD_blank)×100.
5. Confocal microscopy experiments

MCF-7 cells were seeded in 6-well culture plates containing sterile coverslips and were cultured in RPMI 1640 medium supplemented with 10% (V/V) fetal bovine serum (FBS), penicillin (100 U/mL) and streptomycin (100 μg/mL) at 37 °C in a 95% humidity atmosphere under 5% CO₂ for 24 h. Before imaging, the cells were washed with PBS (pH 7.4) three times and then incubated with probe 1 (10 μM) in PBS (pH 7.4) at 25 °C for 30 min. After that, the samples were rinsed three times with PBS (pH 7.4) to remove the remaining probe. For the control experiment, the cells were pretreated with NEM (1 mM) at 37 °C for 30 min. After washing with PBS (pH 7.4) three times, the cells were further incubated with probe 1 (10 μM) in a DMSO/PBS (5/95, V/V) solution at 25°C for 30 min. Fluorescence imaging was performed by an Olympus FV1000 confocal laser scanning microscope. Emission was collected at 450-510 nm for the green channel (λex=405 nm) and at 550-630 nm for the red channel (λex = 515 nm).

6. Proposed mechanism for the reaction of probe 1 with Cys and Hcy

![Chemical structures](image)

Fig. S8 Proposed mechanism for the reaction of probe 1 with Cys (C), Hcy (D) and DODT (E)

7. ¹H/¹³C NMR and MS spectra
Fig. S9 The 1H NMR spectrum of probe 1 in CDCl$_3$

Fig. S10 The 13C NMR spectrum of probe 1 in CDCl$_3$

Fig. S11 1H NMR spectra of probe 1 upon addition of NaHS (1.2 equiv.) in DMSO-d_6/H$_2$O (v/v, 100/1)

(1) Only probe 1; (2) probe 1 + NaHS
Fig. S12 ¹H NMR spectra of probe 1 upon addition of DODT

Fig. S13 HRMS of probe 1

Fig. S14 HRMS of 1b
Fig. S15 HRMS of 3d

Fig. S16 HRMS of 4d

Fig. S17 HRMS of 2b

References