Supporting Information

Palladium-Catalyzed C(*sp*³)-C(*sp*²) Cross-Coupling of Homoleptic Rare-Earth Metal Trialkyl Complexes with Aryl Bromides: Efficient Synthesis of Functionalized Benzyltrimethylsilanes

Guilong Cai, Yingda Huang, Tingting Du, Shaowen Zhang, Bo Yao* and Xiaofang Li*

Key Laboratory of Cluster Science of Ministry of Education, Department of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China

Table of Contents

General Information	2
Preparation of The (Trimethylsilyl)methyl Complexes 1a-1c	2
Reaction of 1a-1c with 4-Bromoanisole	3
Complete Table for Condition Optimization	3
Substrate Scope	4
Gas Chromatographic Analysis of the Products	9
Copies of ¹ H and ¹³ C NMR Spectra 1	6

General Information

All reactions were carried out under a nitrogen atmosphere using oven dried glassware and using standard Schlenk techniques. THF, Et₂O, hexane and toluene were dried and distilled over sodium. Palladium catalysts (98% purity), phosphine ligands, rare-earth metal trichlorides and LiCH₂SiMe₃ are purchased from J&K Scientic and used without further purification. The real purity of $Pd_2(dba)_3$ was determined as 92% according to the method in the literature (S. S. Zalesskiy, V. P. Ananikov, Organometallics, 2012, 31, 2302-2309). Other chemicals including aryl bromides, iodides, and α -bromostyrene were purchased from *Energy Chemical* and used without further purification. Chromatographic purification was conducted with technical grade solvents (petroleum ether, dichloromethane and ethyl acetate) and silica gel 40-63 µm. TLC was performed on Merck silica gel 60 F₂₅₄ TLC aluminium plates and visualized with UV light (254 nm), permanganate stain, CAN stain or PMA stain. ¹H NMR spectra were recorded on a Brucker Advance 400 MHz spectrometer in $CDCl_3$ or toluene- d_8 (all signals are reported in ppm with the internal chloroform signal at 7.26 ppm, or the internal toluene signal at 7.00 ppm as standard). ¹³C NMR spectra were recorded with ¹H-decoupling on a Brucker Advance 101 MHz spectrometer in CDCl₃ or toluene- d_8 (all signals are reported in ppm) with the internal chloroform signal at 77.16 ppm, or the internal DMSO signal at 20.43 ppm as standard). Gas chromatographic analysis was conducted by a Shimadzu GC2014C gas chromatograph instrument.

Preparation of The (Trimethylsilyl)methyl Complexes 1a-1c.

LnCl₃
$$\xrightarrow{1) \text{ THF, reflux, 30 min}}$$
 Ln(CH₂SiMe₃)₃(THF)₂
2) LiCH₂SiMe₃ (3.1 equiv)
(Ln = Y, Sc, Lu) 1a-1c, 80-90%

General Procedure: Anhydrous YCl₃ (488 mg, 2.5 mmol) was slurried in THF (60 mL) and stirred at 60 °C for 7 days. To the resulting suspension of YCl₃(THF)_x was added dropwise a solution of LiCH₂SiMe₃ (7.75 mmol) in 10 mL of THF at ambient temperature. The mixture was stirred for 3 h and the solvent was removed under reduced pressure. The resulting residue was extracted with 3×10 mL of hexane. The solvent was evaporated in *vacuo* to give Y(CH₂SiMe₃)₃(THF)₂ (**1a**, 1100 mg, 90% yield) as a white solid. ¹H NMR (400 MHz, toluene-d8) δ 4.09 (t, J = 6.4 Hz, 8H), 1.61-1.33 (m, 8H), 0.18 (s, 27H), -0.38 (s, 6H). The NMR data is in good agreement with that reported in the literature.¹

Sc(CH₂SiMe₃)₃(THF)₂ (**1b**): prepared from ScCl₃, 80% yield. ¹H NMR (400 MHz, toluene-d8) δ 4.06 (t, J = 6.5 Hz, 8H), 1.52-1.37 (m, 8H), 0.18 (s, 27H), -0.39 (s, 6H). The NMR data is in good agreement with that reported in the literature.¹

Lu(CH₂SiMe₃)₃(THF)₂ (**1c**): prepared from LuCl₃, 85% yield. ¹H NMR (400 MHz, C₆D₆) δ 3.96 (t, *J* = 6.4 Hz, 8H), 1.29 (t, *J* = 6.5 Hz, 8H), 0.29 (s, 27H), -0.89 (s, 6H). The NMR data is in good agreement with that reported in the literature.²

Reaction of 1a-1c with 4-Bromoanisole

Table S1. Reaction of 1a-1c with 4-bromoanisole 2a in the presence of Pd₂(dba)₃/XPhos

Entry	Ln	Ln(CH ₂ SiMe ₃) ₃ (THF) ₂	Yield ^b
1	Y	1a	92%
2	Sc	1b	95%
3	Lu	1e	89%

^{*a*} Conditions: 4-bromoanisole **2a** (1.0 equiv, 0.3 mmol), $Pd_2(dba)_3$ (2.5 mol%, 0.0075 mmol), XPhos (10 mol%, 0.03 mmol) and Ln(CH₂SiMe₃)₃(THF)₂ **1** (0.4 equiv, 0.12 mmol) in toluene (4 mL) at room temperature, 1h. ^{*b*}All yields of **3a** are reported after silica gel chromatographic purification.

Complete Table for Condition Optimization

General Procedure: In a dry Schlenk flask, to a mixture of Pd catalyst, ligand and 4bromoanisole **2a** (1.0 equiv, 0.075 mmol) in 0.8 mL of dry toluene-d8 was added a solution of (trimethylsilyl)methyl yttrium complex **1a** (0.33-0.4 equiv) in 0.2 mL of dry

^[1] M. F. Lappert, R. Pearce, J. Chem. Soc., Chem. Commun., 1973, 126.

^[2] S. Arndt, P. Voth, T. P. Spaniol, J. Okuda, Organometallics, 2000, 19, 4690-4700.

toluene-d8 dropwise. After being stirred at room temperature for 1 h, the reaction mixture was submitted to ¹H NMR analysis to calculate the conversion of **2a**. Then the reaction was quenched with saturated NH₄Cl aqueous solution (10 mL). The resulting mixture was extracted by ethyl acetate (3×5 mL) and the combined extracts were washed by brine, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by a silica gel chromatography with petroleum ether/dichloromethane (100:0 to 90:10) as the eluent to give the product **3a**.

	[Pd]	Ligand	1 a		
Entry	(mol%)	(mol%)	(equiv)	Solvent	Conv. of 2a (%)
1	-	-	0.4	Toluene	0
2	$Pd_2(dba)_3(2.5)$	-	0.4	Toluene	0
3	$Pd_2(dba)_3$ (2.5)	XPhos (10)	0.4	Toluene	100
4	$Pd_2(dba)_3 (2.5)$	SPhos (10)	0.4	Toluene	55
5	$Pd(PtBu_3)_2(5)$	-	0.4	Toluene	17
6	$Pd_2(dba)_3$ (2.5)	XPhos (10)	0.4	THF	33
7	$Pd_2(dba)_3$ (2.5)	XPhos (10)	0.4	Et ₂ O	6
8	$Pd_2(dba)_3(1)$	XPhos (4)	0.33	Toluene	100
9	$Pd_2(dba)_3(0.5)$	XPhos (2)	0.33	Toluene	100
10	$Pd_2(dba)_3 (0.25)$	XPhos (1)	0.33	Toluene	85
11	$Pd_2(dba)_3(0.5)$	XPhos (1)	0.33	Toluene	100
12	$Pd_2(dba)_3$ (2.5)	PPh ₃ (10)	0.4	Toluene	0

Table S2. Condition optimization for the cross-coupling of 1a with 2a.

Substrate Scope

General Procedure: In a dry Schlenk flask, to a mixture of $Pd_2(dba)_3$, XPhos and arylbromide **2** (1.0 equiv, 0.3 mmol) in 3.2 mL of dry toluene was added a solution of (trimethylsilyl)methyl yttrium complex **1a** (0.33 equiv) in 0.8 mL of dry toluene dropwise. After being stirred at room temperature for 1 h, the reaction was quenched with saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted by ethyl acetate (3×10 mL) and the combined extracts were washed by brine, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to give the product **3**.

3a: 89%

From the reaction of 4-bromoanisole **2a** with **1a**. $R_f = 0.45$ (Petroleum ether/ethyl acetate 150:1). ¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, J = 8.5 Hz, 2H), 6.79 (d, J = 8.6 Hz, 2H), 3.78 (s, 3H), 2.01 (s, 2H), -0.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.6, 132.5, 128.9, 113.8, 55.4, 25.8, -1.8. The NMR data is in good agreement with that reported in the literature.³

3b: 85%

From the reaction of 4-*tert*-butylphenyl bromide **2b** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.2 Hz, 2H), 2.04 (s, 2H), 1.31 (s, 9H), 0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 146.7, 137.3, 127.8, 125.1, 34.3, 31.6, 26.5, -1.7. The NMR data is in good agreement with that reported in the literature.⁴

3c: 91%

From the reaction of 4-ethylphenyl bromide **2c** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 2.62 (q, J = 7.6 Hz, 2H), 2.07 (s, 2H), 1.24 (t, J = 7.6 Hz, 3H), 0.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 137.6, 128.1, 127.7, 28.5, 26.6, 15.8, -1.7. The NMR data is in good agreement with that reported in the literature.⁵

3d: 99%

From the reaction of 2-methylphenyl iodide **2d** with **1a**. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 7.4 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 7.3 Hz, 1H), 6.96 (d, J = 7.5 Hz, 1H), 2.23 (s, 3H), 2.10 (s, 2H), 0.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 134.7, 130.2, 128.8, 125.7, 124.2, 23.8, 20.5, -1.2. The NMR data is in good agreement with that reported in the literature.⁶

3e: 88%

From the reaction of 4-fluorophenyl bromide **2e** with **1a**. $R_f = 0.5$ (Petroleum ether/ethyl acetate 100:1). ¹H NMR (400 MHz, CDCl₃) δ 6.99 – 6.84 (m, 4H), 2.04 (s, 2H), -0.02 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4 (d, J = 241.1 Hz), 136.1 (d, J = 3.1 Hz), 129.2 (d, J = 7.5 Hz), 115.0 (d, J = 21.0 Hz), 26.2, -1.9. The NMR data is in good agreement with that reported in the literature.⁷

3f: 72%

From the reaction of 3,5-dichlorophenyl bromide **2f** with **1a**. $R_f = 0.5$ (Petroleum ether/ethyl acetate 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (t, J = 1.9 Hz, 1H), 6.87 (d, J = 1.9 Hz, 2H), 2.04 (s, 2H), 0.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 134.6, 126.4, 124.3, 27.2, -1.8. The NMR data is in good agreement with that reported in the literature.⁸

3g: 81%

From the reaction of 4-cyanophenyl bromide **2g** with **1a**. $R_f = 0.5$ (Petroleum ether/ethyl acetate 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 2.17 (s, 2H), -0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 132.1, 128.6, 119.6, 107.7, 28.4, -1.9. The NMR data is in good agreement with that reported in the literature.⁹

From the reaction of 5-bromoindole **2h** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.28 – 7.22 (m, 2H), 7.17 – 7.12 (m, 1H), 6.86 (dd, J = 8.4, 1.4 Hz, 1H), 6.45 (t, J = 2.2 Hz, 1H), 2.15 (s, 2H), -0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 133.6, 131.6, 128.4, 124.1, 123.4, 119.2, 110.6, 102.1, 29.9, 26.7, -1.7. The NMR data is in good agreement with that reported in the literature.⁴

From the reaction of 4-bromobenzyl alcohol **2i** with **1a**. $R_f = 0.3$ (Petroleum ether/ethyl acetate 80:1). ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 4.63 (d, J = 5.6 Hz, 2H), 2.08 (s, 2H), -0.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 136.5, 128.3, 127.3, 65.6, 27.0, -1.8. The NMR data is in good agreement with that reported in the literature.¹⁰

3j: 90%

From the reaction of 4-bromostyrene **2j** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 7.9 Hz, 2H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 5.68 (d, J = 17.6 Hz, 1H), 5.16 (d, J = 10.9 Hz, 1H), 2.09 (s, 2H), 0.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 137.0, 133.5, 128.3, 126.2, 112.1, 27.1, -1.8. The NMR data is in good agreement with that reported in the literature.¹¹

3k: 97%

From the reaction of ((4-bromophenyl)ethynyl)trimethylsilane **2k** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 2.09 (s, 2H), 0.25 (s, 9H), -0.02 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 132.0, 128.0, 118.6, 105.8, 93.0, 27.6, 0.2, -1.8. The NMR data is in good agreement with that reported in the literature.¹²

3I: 94%

From the reaction of 4-bromobiphenyl **2l** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.6 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 8.1 Hz, 2H), 2.19 (s, 2H), 0.09 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 139.9, 136.9, 128.8, 128.6, 127.0, 126.9, 126.8, 26.9, -1.7. The NMR data is in good agreement with that reported in the literature.⁴

From the reaction of 2-fluorenyl bromide **2m** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, C₇D₈) δ 7.57 (d, J = 7.5 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.26 (d, J = 7.4 Hz, 1H), 7.22 (t, J = 7.4 Hz, 1H), 7.12 (t, J = 7.8 Hz, 1H), 6.98 (s, 1H), 6.91 (d, J = 7.8 Hz, 1H), 3.49 (s, 2H), 2.02 (s, 2H), -0.01 (s, 9H). ¹³C NMR (101 MHz, C₇D₈) δ 143.9, 143.2, 142.5, 139.2, 138.5, 126.9, 126.2, 125.3, 125.1, 124.8, 119.9, 119.6, 36.9, 27.3, -1.8. The NMR data is in good agreement with that reported in the literature.¹⁰

3n: 93%

From the reaction of 2-naphthyl bromide **2n** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.0 Hz, 1H), 7.74 (t, J = 8.0 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.38 (t, J = 7.3 Hz, 1H), 7.19 (dd, J = 8.4, 1.3 Hz, 1H), 2.27 (s, 2H), 0.05 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 134.0, 131.1, 128.0, 127.7, 127.6, 127.1, 125.9, 125.3, 124.5, 27.5, -1.7. The NMR data is in good agreement with that reported in the literature.⁴

3o: 76%

From the reaction of α -bromostyrene **20** with **1a**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.8 Hz, 2H), 7.35 – 7.21 (m, 4H), 5.12 (s, 1H), 4.87 (s, 1H), 2.02 (s, 2H), -0.10 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 142.9, 128.2, 127.3, 126.5, 110.2, 26.3, -1.3. The NMR data is in good agreement with that reported in the literature.¹³

[3] H. Takahashi, K. M. Hossain, Y. Nishihara, T. Shibata, K. Takagi, J. Org. Chem., 2006, 71, 671.

[4] M. Tobisu, T. Takahira, N. Chatani, Org. Lett., 2015, 17, 4352.

[5] M. E. Crestoni, S. Fornarini, G. Occhiucci, J. Organomet. Chem., 1994, 465, 109.

[6] R. D. Bach, R. C. Klix, Tetrahedron Lett., 1986, 27, 1983.

[7] T. Maruyama, Y. Mizuno, I. Shimizu, S. Suga, J.-i. Yoshida, J. Am. Chem. Soc., 2007, 129, 1902.

[8] M. Giannerini, M. Fañan ás-Mastral, B. L. Feringa, Nat. Chem., 2013, 5, 667.

[9] G. A. Molander, C.-S. Yun, M. Ribagorda, B. Biolatto, J. Org. Chem., 2003, 68, 5534.

[10] D. Heijnen, V. Hornillos, B. P. Corbet, M. Giannerini, B. L. Feringa, Org. Lett., 2015, 17, 2262.

[11] S. Langle, F. David-Quillot, A. Balland, M. Abarbri, A. Duchâne, J. Organomet. Chem., 2003, 671, 113.

[12] A. Carpita, L. Mannocci, R. Rossi, Eur. J. Org. Chem., 2005, 2005, 1859.

[13] L. Guo, M. Leiendecker, C.-C. Hsiao, C. Baumann, M. Rueping, *Chem. Commun.*, **2015**, *51*, 1937.

Gas Chromatographic Analysis of the Products

Conditions: SPL temperature, 250 °C; SFID temperature, 250 °C; Column (WondaCAP WAX) 80 °C for 1 min, heated to 250 °C at the rate of 20 °C/min.

Copies of ¹H and ¹³C NMR Spectra

