Supplementary Information

Tetrahedral Cage Complex with Planar Vertices: Selective Synthesis of Pt₄L₆ Cage Complexes Involving Halide Bindings Driven by Hydrogen Bonds

Masaki Ito, Masato Iseki, Masumi Itazaki, Hiroshi Nakazawa*

Department of Chemistry, Graduate School of Science, Osaka City University,

Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan. *e-mail: nakazawa@sci.osaka-cu.ac.jp

Table of Contents

General considerations		S 1
Synthesis of 1,1'-bis(diphenylphosphinecarboxamidyl)ferrocene (L)		S2
Synthesis of 1,1'-bis(diphenylphosphinethiocarboxamidyl)ferrocene (L')		S2
Synthesis of $PtL_{2}(1)$		S2
Syntheses of [CHCl ₃ 2a], 2a	S3	
Syntheses of [CHCl ₃ ⊂ 2b] and 2b		S4
Synthesis of 3		S5
NMR spectra of L		S6-S7
NMR spectra of L'		S7-S8
NMR and ESI-MS spectra of 2a		S9-S11
NMR and ESI-MS spectra of 2b		S12-S13
NMR spectra of 3		S14-S15
X-ray crystallography measurements		S16-S18
References		S19

General considerations

Ferrocene derivatives (Fe(C₅H₄NCO)₂,^{S1} Fe(C₅H₄NCS)₂^{S2}), platinum complexes (Pt(PPh₃)₄,^{S3} *cis*-PtCl₂(PPh₃)₂,^{S4} *cis*-PtBr₂(PPh₃)₂,^{S5} *cis*-PtI₂(PPh₃)₂^{S5}), PhNHC(O)PPh₂,^{S6} lanthanum complex (La(a-dimethylbenzylamine)₃^{S7}) and HPPh₂^{S8} were prepared according to the literature methods. The other chemicals were commercially available. Solvents were purified employing a two-column solid-state purification system or were distilled from appropriate drying agents under N₂. NMR spectra (¹H, ¹³C{¹H}, ³¹P{¹H}, H-H COSY and DOSY) were recorded on a JNM AL-400 spectrometer. ¹H NMR and ¹³C{¹H} NMR data were referenced to the residual peaks of the solvent, and ³¹P{¹H} NMR spectrum was referenced to external 85% H₃PO₄. The ³¹P{¹H}NMR spectra were simulated using gNMR program (v.5.6.0.0) for Windows, Ivory Soft, 2006. ESI-MS imaging experiments were performed on a 7.0 T solariX FT-ICR MS (Bruker Daltonics) in positive-ion mode

Synthesis of 1,1'-bis(diphenylphosphinecarboxamidyl)ferrocene (L)

A toluene (60 mL) solution of Fe(C₃H₄NCO)₂ (4.42 g, 16.5 mmol) and HPPh₂ (5.70 mL, 32.8 mmol) was stirred at 100 °C for 1 h under a dry nitrogen atmosphere. The red solution was passed through a neutral alumina pad. After all volatile materials were removed under reduced pressure, the residue was washed with *n*hexane (20 mL × 4) and dried in *vacuo* to give a yellow powder of L (6.67 g, 10.4 mmol, 63%). Suitable single crystals were obtained from slow diffusion of *n*hexane into the CH₂Cl₂ solution of L. ¹H NMR (400 MHz, CDCl₃, δ , ppm): 3.93 (s, 4H, C₅H₄), 4.29 (s, 4H, C₅H₄), 7.14 (s, 2H, NH), 7.38-7.40 (m, 12H, Ph), 7.55-7.60 (m, 8H, Ph). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 63.67 (s, C₅H₄), 65.77 (s, C₅H₄), 94.50 (s, C₅H₄-*ipso*), 129.03 (m, Ph), 129.94 (s, Ph), 133.42 (d, *J*_{PC} = 10.0 Hz, Ph-*ipso*), 134.53 (m, Ph), 176.00 (d, *J*_{PC} = 15.8 Hz, CO). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm): -2.06 (s). ESI-MS: [M]⁺ calcd for C₃₆H₃₀FeN₂O₂P₂: 640.1127; found: 640.1119. Elemental analysis (%) calcd for C₃₆H₃₀FeN₂O₂P₂: C, 67.52; H, 4.72; N, 4.37; found: C, 67.16; H, 4.83; N, 4.38.

Synthesis of 1,1'-bis(diphenylphosphinethiocarboyamidyl)ferrocene (L')

A THF (3 mL) solution of Fe(C₅H₄NCS)₂ (150 mg, 0.50 mmol), HPPh₂ (0.20 mL, 1.18 mmol) and La(α -dimethylbenzylamine)₃ (30 mg, 0.050 mmol) was stirred at ambient temperature for 15 h under a dry nitrogen atmosphere. The solution was passed through a neutral alumina pad. After all volatile materials were removed under reduced pressure, the residue was washed with *n*hexane (20 mL × 4) and dried in *vacuo* to give a brown powder of L' (68.7 mg, 0.10 mmol, 20%). ¹H NMR (400 MHz, CDCl₃, δ , ppm): 4.08 (s, 4H, C₅H₄), 4.71 (s, 4H, C₅H₄), 7.46 (s, 12H, Ph), 7.54 (s, 8H, Ph), 8.38 (s, 2H, NH). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 64.86 (s, C₅H₄), 66.77 (s, C₅H₄), 96.69 (s, C₅H₄-*ipso*), 128.60 (br, Ph-*ipso*), 129.38 (s, Ph), 130.38 (s, Ph), 134.67 (br, Ph), 206.18 (br, CO). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm): 17.63 (s). ESI-MS: [M]⁺ calcd for C₃₆H₃₀FeN₂P₂S₂: 672.0675; found: 672.0672. Elemental analysis (%) calcd for C₃₆H₃₀FeN₂P₂S₂: C, 64.29; H, 4.50; N, 4.17; found: C, 63.35; H, 4.88; N, 4.70.

Synthesis of PtL₂ (1)

A dichloromethane (5 mL) solution of L (128 mg, 0.20 mmol) and Pt(PPh₃)₄ (124 mg, 0.10 mmol) was stirred at ambient temperature for 1 h under a dry nitrogen atmosphere, poorly soluble yellow crystals were formed and were filtered. The obtained crystals were washed with CH₂Cl₂ (5.0 mL × 3) and were dried in *vacuo* to give of **1** (101 mg, 0.068 mmol, 68%). Elemental analysis (%) calcd for $C_{72}H_{60}Fe_2N_4O_4P_4Pt$: C, 58.59; H, 4.10; N, 3.80; found: C, 58.25; H, 4.16; N, 3.91. No ESI-MS was recorded because of sample insolubility for water and organic solvent. In addition, we tried several times to obtain FAB-MS data, but could not get it.

A *n*hexane (15 mL) and a vacant test tube were put in a 150 mL Schlenk tube under a dry nitrogen atmosphere. A chloroform (1.0 mL) solution of L (128 mg, 0.2 mmol) and $PtCl_2(PPh_3)_2$ (105 mg, 0.13 mmol) was vigorously stirred at ambient temperature for 5 min in the test tube, then it was left to stand for overnight. The resulting red crystals of [CHCl₃ $\sub{2a}$] were isolated by filtration.

Fig. S1 Equipment diagram

Synthesis of 2a

A *n*hexane (15 mL) and a vacant test tube were put in a 150 mL Schlenk tube under a dry nitrogen atmosphere. A chloroform (1.0 mL) solution of L (128 mg, 0.20 mmol) and PtCl₂(PPh₃)₂ (105 mg, 0.13 mmol) was vigorously stirred at ambient temperature for 5 min in the test tube, then it was left standing for overnight without stirring. The resulting red crystals of [CHCl₃**-2a**] were isolated by filtration and rinsed with chloroform (0.5 mL). The crystals were dried in *vacuo* to give orange powder of **2a** (150 mg, 0.031 mmol, 93%). ¹H NMR (400 MHz, CDCl₃, δ, ppm): 2.83 (s, 4H, C₅H₄), 3.92 (s, 4H, C₅H₄), 4.28 (s, 4H, C₅H₄), 4.55 (s, 8H, C₅H₄), 4.73 (s, 4H, C₅H₄), 4.78 (s, 4H, C₅H₄), 5.13 (s, 4H, C₅H₄), 5.56 (s, 4H, C₅H₄), 5.62 (s, 4H, C₅H₄), 5.97 (s, 4H, C₅H₄), 6.29 (s, 4H, C₅H₄), 6.63 (t, *J*_{HH} = 7.8 Hz, 8H, Ph), 6.93 (br, 8H, Ph), 7.07-7.17 (overlapping m, 8H, Ph), 7.27-7.60 (overlapping m, 68H, Ph), 7.81-7.87 (m, 8H, Ph), 8.04-8.08 (m, 8H, Ph), 8.16 (br, 4H, Ph), 8.33-8.37 (m, 8H, Ph), 11.66 (s, 4H, NH), 11.93 (s, 4H, NH), 12.56 (s, 4H, NH). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 63.03 (s, C₅H₄), 64.14 (s, C₅H₄), 64.36 (s, C₅H₄), 64.42 $(s, C_5H_4), 64.49 (s, C_5H_4), 65.20 (s, C_5H_4), 66.16 (s, C_5H_4), 66.95 (s, C_5H_4), 67.08 (s, C_5H_4), 67.17 (s, C_5H_4)$ C_5H_4), 68.20 (s, C_5H_4), 69.02 (s, C_5H_4), 93.92 (d, $J_{PC} = 11.63$ Hz, C_5H_4 -*ipso*), 94.74 (d, $J_{PC} = 12.46$ Hz, $C_{5}H_{4}$ -ipso), 95.08 (d, $J_{PC} = 12.46$ Hz, $C_{5}H_{4}$ -ipso), 125.52 (Ph), 126.02 (Ph), 126.20 (Ph), 126.86 (Ph), 126.95 (Ph), 127.19 (Ph), 127.30 (Ph), 127.37 (Ph), 127.49 (Ph), 127.62 (Ph), 128.11 (Ph), 128.23 (Ph), 128.33 (Ph), 128.42 (Ph), 128.60 (Ph), 128.67 (Ph), 128.78 (Ph), 128.85 (Ph), 131.03 (Ph), 131.37 (Ph), 131.38 (Ph), 131.81 (Ph), 131.95 (Ph), 131.97 (Ph), 132.16 (Ph), 132.20 (Ph), 132.64 (Ph), 132.65 (Ph), 133.79 (Ph), 133.90 (Ph), 133.98 (Ph), 134.70 (Ph), 134.7 (br, Ph), 135.17 (Ph), 135.26 (Ph), 137.26 (Ph), 137.37 (Ph), 137.47 (Ph), 138.91 (Ph), 139.01 (Ph), 159.79 (dd, $J_{PC} = 70.0$ Hz, $J_{PC} = 4.2$ Hz, CO), 161.03 $(d, J_{PC} = 57.1 \text{ Hz}, \text{CO}), 163.19 (dd, J_{PC} = 74.1 \text{ Hz}, J_{PC} = 3.53 \text{ Hz}, \text{CO}).$ ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ, ppm): -1.87 (dd, J_{PtP} = 3680.0 Hz, J_{PP} = 20.0 Hz, J_{PP} = 18.8 Hz), 0.33 (dd, J_{PtP} = 2496.0 Hz, J_{PP} = 368.0 Hz, $J_{PP} = 18.8$ Hz), 1.87 (dd, $J_{PtP} = 2456.0$ Hz, $J_{PP} = 368.0$ Hz, $J_{PP} = 20.0$ Hz). ESI-MS: [M]²⁺ calcd for C₂₁₆H₁₈₀Cl₈Fe₆N₁₂O₁₂P₁₂Pt₄: 2453.1447; found: 2453.1386. Elemental analysis (%) calcd for C₂₁₆H₁₈₀Cl₈Fe₆N₁₂O₁₂P₁₂Pt₄: C, 52.88; H, 3.70; N, 3.43; found: C, 53.00; H, 4.10; N, 3.36.

Synthesis of [CHCl₃⊂2b]

A *n*hexane (15 mL) and a vacant test tube were put in a 150 mL Schlenk tube under a dry nitrogen

atmosphere. A chloroform (1.0 mL) solution of L (128 mg, 0.20 mmol) and $PtBr_2(PPh_3)_2$ (117 mg, 0.13 mmol) was stirred at ambient temperature for 5 min in the test tube, then it was left to stand for overnight. The resulting crystals of [CHCl₃ \subset **2b**] were isolated by filtration.

Synthesis of 2b

A *n*hexane (15 mL) and a vacant test tube were put in a 150 mL Schlenk tube under a dry nitrogen atmosphere. A chloroform (1.0 mL) solution of L (128 mg, 0.20 mmol) and PtBr₂(PPh₃)₂ (117 mg, 0.13 mmol) was stirred at ambient temperature for 5 min in the test tube, then it was left standing for overnight without stirring. The resulting red crystals of [CHCl₃ **Cb**] were isolated by filtration and rinsed with chloroform (0.5 ml). The crystals were dried in vacuo to give orange powder of 2b (136 mg, 0.026 mmol, 78%). ¹H NMR (400 MHz, CDCl₃, δ, ppm): 2.87 (s, 4H, C₅H₄), 3.90 (s, 4H, C₅H₄), 4.30 (s, 4H, C₅H₄), 4.45 (s, 4H, C₅H₄), 4.51 (s, 4H, C₅H₄), 4.72 (s, 4H, C₅H₄), 4.87 (s, 4H, C₅H₄), 5.18 (s, 4H, C₅H₄), 5.52 (s, 4H, C₅H₄), 5.84 (s, 4H, C₅H₄), 5.97 (s, 4H, C₅H₄), 6.19 (s, 4H, C₅H₄), 6.59 (br, 8H, Ph), 6.90 (br, 8H, Ph), 7.05-7.16 (overlapping m, 8H, Ph), 7.27-7.39 (overlapping m, 26H, Ph), 7.45-7.49 (m, 8H, Ph), 7.59 (br, 30, Ph), 7.78 (m, 8H, Ph), 8.02 (m, 12H, Ph), 8.31 (br, 12H, Ph), 11.45 (s, 4H, NH), 11.50 (s, 4H, NH), 12.11 (s, 4H, NH). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 62.48 (s, C₅H₄), 63.50 (s, C₅H₄), 64.23 (s, C₅H₄), 64.53 $(s, C_5H_4), 64.72$ $(s, C_5H_4), 65.13$ $(s, C_5H_4), 65.70$ $(s, C_5H_4), 66.65$ $(s, C_5H_4), 66.96$ $(s, C_5H_4), 67.17$ $(s, C_5H_4), 64.72$ C_5H_4), 68.02 (s, C_5H_4), 69.48 (s, C_5H_4), 94.28 (d, $J_{PC} = 11.65$ Hz, C_5H_4 -*ipso*), 94.69 (d, $J_{PC} = 12.4$ Hz, $C_{5}H_{4}$ -ipso), 95.01 (d, $J_{PC} = 12.4$ Hz, $C_{5}H_{4}$ -ipso), 126.28 (Ph), 126.87 (Ph), 126.99 (Ph), 127.32 (Ph), 127.44 (Ph), 127.54 (Ph), 127.68 (Ph), 127.93 (Ph), 128.08 (Ph), 128.19 (Ph), 128.29 (Ph), 128.37 (Ph), 128.47 (Ph), 128.55 (Ph), 128.60 (Ph), 128.67 (Ph), 128.86 (Ph), 131.03 (Ph), 131.28 (Ph), 131.64 (Ph), 131.83 (Ph), 132.21 (Ph), 132.59 (Ph), 133.79 (Ph), 133.99 (Ph), 134.06 (Ph), 134.98 (Ph), 135.06 (Ph), 137.29 (Ph), 137.40 (Ph), 137.5 (br, Ph), 139.52 (Ph), 139.62 (Ph), 159.64 (dd, *J*_{PC} = 72.2 Hz, *J*_{PC} = 4.1 Hz, CO), 160.60 (ddd, *J*_{PC} = 55.6 Hz, *J*_{PC} = 7.5 Hz, *J*_{PC} = 1.7 Hz, CO), 163.25 (dd, *J*_{PC} = 75.5 Hz, *J*_{PC} = 4.7 Hz, CO). ${}^{31}P{}^{1}H{}$ NMR (161.7 MHz, CDCl₃, δ , ppm): -5.98 (dd, $J_{PP} = 2477.0$ Hz, $J_{PP} = 368.0$ Hz, $J_{PP} = 16.2$ Hz), -4.11 (dd, *J*_{PtP} = 3606.0 Hz, *J*_{PP} = 16.7 Hz, *J*_{PP} = 16.2 Hz), 12.22 (dd, *J*_{PtP} = 2478.0 Hz, *J*_{PP} = 368.0 Hz, $J_{PP} = 16.7$ Hz). ESI-MS: $[M]^{2+}$ calcd for $C_{216}H_{180}Br_8Fe_6N_{12}O_{12}P_{12}Pt_4$: 2630.941; found: 2630.938. Elemental analysis (%) calcd for C₂₁₆H₁₈₀Br₈Fe₆N₁₂O₁₂P₁₂Pt₄: C, 49.30; H, 3.45; N, 3.19; found: C, 48.87; H, 3.56; N, 3.27.

Synthesis of 3

A chloroform (1.0 mL) solution of PhNHC(O)PPh2 (6.1 mg, 0.020 mmol) and PtCl2(PPh3)2 (5.3 mg, 6.7

× 10⁻³ mmol) was stirred at ambient temperature for 5 min under air. Removal of the volatile materials under reduced pressure caused the formation of a pale yellow solid. The solid was washed with a large amount of *n*hexane, collected by filtration, and dried in vacuo to give **3** (7.3 mg, 6.2×10^{-3} mmol, 93%). The crystals were obtained by vapor diffusion of *n*hexane into the Et₂O solution of **3**. ¹H NMR (400 MHz, CDCl₃, δ , ppm): 6.89 (s, 4H, Ph), 7.10-8.03 (overlapping m, 41H, Ph), 11.84 (s, 2H, NH), 12.70 (s, 1H, NH). ¹³C{¹H} NMR (100.4 MHz, CDCl₃, δ , ppm): 121.28 (s, N_{*cis*}Ph), 121.44 (s, N_{*trans*}Ph), 125.02 (s, N_{*cis*}Ph), 125.37 (s, P_{*trans*}Ph), 126.16 (t, ¹J_{PC} =28.3 Hz, P_{*cis*}Ph-*ipso*), 127.94 (d, ²J_{PC} = 11.6 Hz, PPh), 128.22 (br, PPh and P_{*cis*}Ph-*ipso*), 128.82 (s, PPh), 131.33 (d, ⁴J_{PC} = 2.4 Hz, NPh), 132.27 (d, ³J_{PC} = 2.4 Hz, PPh), 135.52 (²J_{PC} = 10.8 Hz, NPh), 138.10 (d, ³J_{PC} = 10.8 Hz, NPh-*ipso*), 138.31 (t, ³J_{PC} = 5.0 Hz, NPh-*ipso*), 140.80 (d, ¹J_{CP} = 72.2 Hz, CO), 163.66 (app. t, ^{1,3}J_{CP} = 36.0 Hz, CO). ³¹P{¹H} NMR (161.7 MHz, CDCl₃, δ , ppm): 2.60 (t, J_{PHP} = 3671.9 Hz, J_{PP} = 16.5 Hz, P_{*cis*}), 14.36 (d, J_{PHP} = 2489.9 Hz, J_{PP} = 18.4 Hz, P_{*trans*}). ESI-MS: [M-Cl]⁺ calcd for C₅₇H₄₈FN₂ClN₃O₃P₂Pt: 1145.2239; found: 1145.2237. Elemental analysis (%) calcd for C₅₇H₄₈Cl₂N₃O₃P₃Pt: C, 57.92; H, 4.09; N, 3.56; found: C, 57.73; H, 4.35; N, 3.35.

Fig. S2 ¹H NMR spectrum (CDCl₃, rt, 400 MHz) of L.

Fig. S3 ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, rt, 100.4 MHz) of L.

Fig. S4 $\ ^{31}P\{^{1}H\}$ NMR spectrum (CDCl_3, rt, 161.7 MHz) of L.

Fig. S5 1 H NMR spectrum (CDCl₃, rt, 400 MHz) of L'.

Fig. S6 ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, rt, 100.4 MHz) of L'.

Fig. S7 ${}^{31}P{}^{1}H$ NMR spectrum (CDCl₃, rt, 161.7 MHz) of L'.

NMR and ESI-MS spectra of 2a

Fig. S8 ¹H NMR spectrum (CDCl₃, rt-60 °C, 400 MHz) of **2a**.

Fig. S10 ${}^{31}P{}^{1}H$ NMR spectrum of **2a** (CDCl₃, rt, 161.7 MHz) (top) and the computer-simulated spectrum using gNMR (bottom)

Table S1 gNMR simulation of ${}^{31}P{}^{1}H$ NMR spectrum

	Chemical shift / ppm	Coupling constant / Hz		
P _{trans}	-1.87	$J_{\rm Pt-P} = 3608.0$	$J_{\text{P}cis1-P} = 18.8$	$J_{\text{Pcis2-P}} = 20.0$
P _{cis1}	0.33	$J_{\rm Pt-P} = 2496.0$	$J_{\text{Ptrans-P}} = 18.8$	$J_{\text{Pcis2-P}} = 368.0$
P _{cis2}	18.68	$J_{\text{Pt-P}} = 2456.0$	$J_{\text{Ptrans-P}} = 20.0$	$J_{\rm Pcis1-P} = 368.0$

Fig. S11 H-H COSY spectrum of 2a (CDCl₃, rt, 400 MHz)

Fig. S12 DOSY spectrum of **2a** (CDCl₃, 400 MHz, 30°C, D = 100 ms, d = 2.3 ms, G = 0.3 T/m).

Fig. S13 ESI-MS spectrum of **2a** in CH₂Cl₂/IPA (9:1, v:v)

NMR and ESI-MS spectra of 2b

Fig. S15 ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, rt, 100.4 MHz) of **2b**.

Fig. S16 ${}^{31}P{}^{1}H$ NMR spectrum of **2b** (CDCl₃, rt, 161.7 MHz) (top) and the computer-simulated spectrum using gNMR (bottom)

	Chemical shift / ppm	Coupling constant / Hz		
P _{trans}	-4.11	$J_{\text{Pt-P}} = 3606.0$	$J_{\text{Pcis1-P}} = 16.2$	$J_{\text{Pcis2-P}} = 16.7$
P _{cis1}	-5.98	$J_{\rm Pt-P} = 2477.0$	$J_{\text{Ptrans-P}} = 16.2$	$J_{\text{Pcis2-P}} = 368.0$
P _{cis2}	12.22	$J_{\text{Pt-P}} = 2478.0$	$J_{\text{Ptrans-P}} = 16.7$	$J_{\rm Pcis1-P} = 368.0$

Fig. S17 ESI-MS spectrum of **2b** in CH₂Cl₂/IPA (9:1, v:v)

Fig. S18 ¹H NMR spectrum (CDCl₃, rt, 400 MHz) of **3**.

Fig. S19 ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, rt, 100.4 MHz) of **3**.

Fig. S20 135DEPT ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, rt, 100.4 MHz) of **3**.

X-ray crystallography measurements

X-ray intensity data were collected on a Rigaku/MSC Mercury CCD diffractometer with graphite monochromated Mo-K α radiation. Calculations were performed with the CrystalClear software package of Molecular Structure Corporation. The structures were solved by direct methods and expanded using Fourier techniques. The structures were refined by full matrix least-squares technique using the program ShelXL-97^{S9} or ShelXL-2014^{S10}. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. For [CHCl₃ \subset **2b**], the solvent molecules within the lattice were significantly disordered. Therefore the SQUEEZE function of PLATON was employed to account for the highly disordered solvent molecules.

	L	1	[CHCl ₃ ⊂ 2 a]
Empirical formula	$C_{36}H_{30}FeN_2O_2P_2$	$C_{76}H_{68}Cl_8Fe_2N_4O_4P_4Pt$	$C_{224}H_{188}Cl_{32}Fe_6N_{12}O_{12}P_{12}Pt_4$
Formula weight	640.41	1815.61	5861.35
Temperature (K)	200(2)	200(2)	200(2)
Crystal system	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	<i>C</i> 2/c	Error!
<i>a</i> (Å)	13.7346(13)	29.1376(18)	21.3085(7)
<i>b</i> (Å)	11.8880(10)	15.0037(8)	22.6838(7)
<i>c</i> (Å)	9.9583(10)	18.0317(12)	31.6313(6)
α (°)			90.2849(10)
β (°)	104.743(5)°	109.950(2)°	90.4102(6)
$\gamma(^{\circ})$			117.1817(13)
Volume (Å ³)	1572.4(3)	7409.9(8)	13599.8(7)
Z	2	4	2
$ ho_{ m calcd}$ (Mg m ⁻³)	1.353	1.627	1.431
μ (mm ⁻¹)	0.616	2.697	2.795
F(000)	664	3640	5808
Crystal size (mm ³)	$0.07 \times 0.05 \times 0.03$	$0.13 \times 0.10 \times 0.10$	$0.200\times0.080\times0.070$
Reflections collected	15425	28446	133682
Independent reflections (R(int))	3596 (0.0407)	8452 (0.0437)	47664 (0.0459)
$R1 (I > 2\sigma(I))$	0.0433	0.0424	0.0801
wR2 (all data)	0.0997	0.0931	0.2603
Goodness-of-fit	1.067	1.065	1.058
CCDC	1405347	1405343	1405344

Table S3 Crystallographic data and details of structure refinement of L, 1 and [CHCl₃**2a**].

	[CHCl₃⊂ 2b]	3
Empirical formula	$C_{237}H_{201}Br_8Cl_{63}Fe_6N_{12}O_{12}P_{12}Pt_4$	$C_{61}H_{58}Cl_2N_3O_4P_3Pt$
Formula weight	7768.82	1256.00
Temperature (K)	200(2)	200(2)
Crystal system	triclinic	triclinic
Space group	Error!	Error!
a (Å)	21.46830(10)	11.79990(10)
b (Å)	23.59400(10)	12.6886(2)
c (Å)	32.9537(8)	19.4168(2)
α (°)	88.034(3)	83.953(3)
β (°)	89.129(3)	73.888(3)
γ (°)	65.458(2)	87.375(2)
Volume (Å ³)	15174.8(5)	2777.02(6)
Ζ	2	2
$ ho_{ m calcd}$ (Mg m ⁻³)	1.700	1.502
μ (mm ⁻¹)	3.839	2.759
F(000)	7604	1268
Crystal size (mm ³)	$0.30\times0.25\times0.25$	$0.30\times0.23\times0.15$
Reflections collected	75372	31987
Independent reflections (R(int))	45899(0.0327)	12208 (0.0243)
$R1 (I > 2\sigma(I))$	0.0700	0.0301
wR2	0.2063	0.0674
Goodness-of-fit	1.070	1.102
CCDC	1405345	1405346

Table S4 Crystallographic data and details of structure refinement of [CHCl₃**2b**] and **3**.

Fig. S22 ORTEP drawing of L (thermal ellipsoids at 50% probability). All hydrogen atoms are omitted for clarity. Selected bond lengths (Å): O1-C1 = 1.225(2), N1-C1 = 1.343(3), P1-C1 = 1.886(2).

Fig. S23 ORTEP drawing of 1 (thermal ellipsoids at 50% probability). All hydrogen atoms, solvent molecules, and Ph rings (except *ipso*-C) are omitted for clarity. Selected bond lengths (Å) and angles (°): Pt1–P1 = 2.2890(9), Pt1–P2 = 2.3004(9), O1–C1 = 1.216(4), O2–C7 = 1.216(5), N1–C1 = 1.350(5), N1–C2 = 1.345(5), P1–C1 = 1.882(4), P2–C7 = 1.887(4); P1–Pt1–P1* = 106.62(5), P2–Pt1–P2* = 107.47(4), P1–Pt1–P2 = 108.48(3), P1–Pt1–P2* = 112.94(3).

References

- S1. A. R. Petrov, K. Jess, M. Freytag, P. G. Jones and M. Tamm, Organometallics, 2013, 32, 5946.
- S2. F. Otón, A. Espinosa, A. Tárraga, I. Ratera, K. Wurst, J. Veciana and P. Molina, *Inorg. Chem.*, 2009, 48, 1566.
- S3. R. Ugo, F. Caliati, G. La Monica and J. J. Mrowca, Inorg. Synth., 1968, 11, 105.
- S4. J. A. Rahn, L. Baltusis and J. H. Nelson, Inorg. Chem., 1990, 29, 750.
- L. Rigamonti, A. Forni, M. Manassero, C. Manassero and A. Pasini, *Inorg. Chem.*, 2010, 49, 123.
- S6. A. C. Behrle and J. A. R. Schmidt, Organometallics, 2013, 32, 1141.
- S7. A. C. Behrle and J. A. R. Schmidt, Organometallics, 2011, 30, 3915.
- S8. A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page and P. T. Snee, ACS Nano, 2013, 7, 3190.
- S9. G. M. Sheldrick, ShelXL-97: Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- S10. G. M. Sheldrick, ShelXL-2014: Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 2014.