Supporting Information

Copper Catalyzed Aerobic Oxidative Cyclization and Ketonization: One Pot Synthesis of Benzoimidazo[1,2-a]imidazolones

Manikandan Selvaraju,a Tzuen-Yang Ye,a Chia-Hsin Li,\textsuperscript{a,\textit{b}} Pei-Heng Ho,a and Chung-Ming Sun\textsuperscript{* a,\textit{b}}

a Department of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao Tung University, Hsinchu 300-10, Taiwan, ROC.

b Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan, ROC.

Table of contents

General remarks ---S2

Preparation of 2-aminobenzimidazoles 1-----------------------------------S2

Table 2 (continued). Three component synthesis of benzoimidazo[1,2-a]imidazolones-----------------------------------S3

Experimental Procedure for the synthesis of 5a----------------------------------S4

Spectral data of compounds 5 and 6 --- S4

Spectra (1H NMR, 13C, LR-MS, HRMS, IR) of compounds 5 and 6 -------------S15

X-ray single crystallographic data of compound 5b and 5h----------------S182
General Remarks:

Methanol and acetone were distilled before use. All reactions were performed under an inert atmosphere with unpurified reagents and dry solvents. Analytical thin-layer chromatography (TLC) was performed using 0.25mm silica gel coated plates. Flash chromatography was performed using the indicated solvent and silica gel 60 (230-400 mesh). 1H NMR (300 MHz) and 13C NMR (75 MHz) spectra were recorded on a 300 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) on the scale from an internal standard.

Preparation of 2-aminobenzimidazoles 1.

The preparation of 2-aminobenzimidazoles 1 is accomplished by following literature methods.15 The synthesis of 2-aminobenzimidazoles 1 from 1-fluoro-2-nitrobenzene $\mathbf{1s}$ involves a sequential three steps as shown in Scheme 6. Reaction of 1-fluoro-2-nitrobenzene $\mathbf{1s}$ with primary amines furnished ortho nitro anilines $\mathbf{2s}$. Subsequent steps involved a nitro group reduction to $\mathbf{3s}$ followed by ring closure with cyanogen bromide to deliver 2-aminobenzimidazole 1.

![Scheme 6. Preparation of 2-aminobenzimidazoles 1](image-url)
Table 2(continued). Three component synthesis of benzoimidazo[1,2-a]imidazolones

<table>
<thead>
<tr>
<th>Entry</th>
<th>R₂</th>
<th>R₃—CHO</th>
<th>R₄—H</th>
<th>Yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5l</td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>5m</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>5n</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>5o</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>5p</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>5q</td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>5r</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>5s</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>5t</td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>5u</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>5v</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>5w</td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>5x</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>5y</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>5z</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
</tr>
</tbody>
</table>

\(^b\) Isolated Yields
Experimental Procedure for the synthesis of methyl 3-benzoyl-9-isopropyl-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5a)

A solution of methyl 2-amino-1-isopropyl-1H-benzo[d]imidazole-5-carboxylate 1a (0.12 g, 0.52 mmol) in toluene (10 mL) was added benzaldehyde (0.065 g, 0.62 mmol), phenyl acetylene (0.063 g, 0.62 mmol), Cs₂CO₃ (0.25 g, 0.78 mmol) followed by CuI (0.0098 g, 10 mol %) and the resulting reaction mixture was allowed to reflux at 110 °C under oxygen atmosphere. Upon completion (8-10 h) of the reaction, the mixture was filtered through a pad of celite and washed with ethyl acetate (25 mL x 2). The filtrate was concentrated under reduced pressure to give the crude mixture, which was purified by column chromatography on silica gel to afford compound 5a (0.18 g, 77 %).

Spectral Data of compounds 5 and 6:

Methyl 3-benzoyl-9-isopropyl-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5a):

- **¹H NMR (300 MHz, CDCl₃)**: δ 9.28 (s, 1H), 8.15 (d, J = 8.6 Hz, 1H), 7.57 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.6 Hz, 1H), 7.28-7.26 (m, 3H), 7.08-6.99 (m, 5H), 4.99 (m, 1H), 3.95 (s, 3H), 1.80 (d, J = 6.8 Hz, 6H); **¹³C NMR (75 MHz, CDCl₃)**: δ 185.5, 167.0, 154.9, 150.0, 138.5, 137.5, 134.4, 131.4, 130.1, 129.5, 128.0, 127.7, 127.6, 125.9, 125.4, 122.8, 117.6, 109.7, 52.2, 48.3, 20.7; **MS (ESI-MS)** m/z: 460 (M+Na); **HRMS calcd for C₂₇H₂₃N₃O₃(M+Na):** 460.1637; Found 460.1635; **IR (cm⁻¹, neat):** 3063, 2984, 2937, 1716, 1618, 1568.

Methyl 3-benzoyl-9-pentyl-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5b):

- **¹H NMR (300 MHz, CDCl₃)**: δ 9.27 (s, 1H), 8.15 (d, J = 8.6 Hz, 1H), 7.55-7.50 (m, 5H), 7.45 (m, 1H), 7.27-7.23 (m, 3H), 7.14-7.03 (m, 5H), 4.35 (t, J = 7.0 Hz, 2H), 3.96 (s, 3H), 2.04-2.02 (m, 2H), 1.42-1.39 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H); **¹³C NMR (75 MHz, CDCl₃)**: δ 185.5, 167.0, 155.0, 150.6, 138.4, 134.3, 131.4, 130.1, 129.5, 128.1, 127.6, 126.1, 125.4, 123.0, 121.9, 117.6, 109.1, 52.2, 43.6, 28.9, 28.4, 22.3, 13.9; **MS (ESI-MS)** m/z: 488 (M+Na); **HRMS (ESI)** calcd for C₂₉H₂₇N₃O₃(M+Na): 488.1950; Found 488.1952; **IR (cm⁻¹, neat):** 3052, 2940, 2843, 1717, 1618, 1588.
Methyl 3-(4-methylbenzoyl)-9-pentyl-2-(p-tolyl)-9H-benzo[d]imidazo[1,2-a]
imidazole-6-carboxylate (5c): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 9.19 (s, 1H), 8.15 (d, \(J = 8.3\) Hz, 1H), 7.45 (d, \(J = 8.3\) Hz, 2H), 7.39 (d, \(J = 8.6\) Hz, 1H), 7.18 (d, \(J = 7.8\) Hz, 2H), 6.90-6.87 (m, \(J = 7.3\) Hz, 4H), 4.34 (t, \(J = 7.1\) Hz, 2H), 3.95 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H), 1.96-1.94 (m, 2H), 1.68-1.65 (m, 4H), 1.41 (m, 2H), 0.90 (t, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 185.4, 167.1, 154.5, 149.9, 142.0, 137.8, 137.5, 135.8, 131.6, 130.0, 129.7, 128.3, 125.7, 125.4, 122.6, 121.3, 117.4, 109.6, 52.7, 48.2, 21.4, 21.1, 20.7; MS (ESI-MS) \(m/z\): 449.4 (M+H); HRMS (ESI) calcd for C\(_{31}\)H\(_{31}\)N\(_3\)O\(_3\)(M+H): 494.2438; Found 494.2451; IR (cm\(^{-1}\), neat): 2954, 2926, 2855, 1717, 1621, 1605, 1583.

Methyl 3-benzoyl-2-phenyl-9-propyl-9H-benzo[d]imidazo[1,2-a]imidazole
-6-carboxylate (5d): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 9.28 (d, \(J = 1.6\) Hz, 1H), 8.18 (d, \(J = 8.6\) Hz, 1H), 7.61 – 7.52 (m, 2H), 7.43 (d, \(J = 8.6\) Hz, 1H), 7.32 – 7.27 (m, 2H), 7.24 (t, \(J = 8.6\) Hz, 1H), 7.16 – 7.03 (m, 5H), 4.34 (t, \(J = 7.4\) Hz, 2H), 3.97 (s, 3H), 2.05 (sextet, \(J = 7.4\) Hz, 2H), 1.07 (t, \(J = 7.4\) Hz, 3H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 186.0, 167.5, 155.5, 151.1, 138.9, 138.8, 134.8, 131.9, 130.6, 129.9, 128.5, 128.1, 126.6, 125.9, 123.5, 122.4, 118.1, 109.6, 52.7, 45.6, 22.6, 11.8; MS (ESI-MS) \(m/z\): 437.5 (M+H); HRMS (ESI) calcd for C\(_{27}\)H\(_{23}\)N\(_3\)O\(_3\)(M+H): 437.1734; Found 437.2538; IR (cm\(^{-1}\), neat): 2973, 2934, 2867, 1714, 1620, 1584.

Methyl 9-isopropyl-3-(4-methylbenzoyl)-2-(p-tolyl)-9H-benzo[d]imidazo
[1,2-a]imidazole-6-carboxylate (5e): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 9.19 (d, \(J = 1.4\) Hz, 1H), 8.13 (dd, \(J = 8.6, 1.4\) Hz, 1H), 7.47-7.44 (m, 3H), 7.18 (dd, \(J = 8.0, 1.4\) Hz, 2H), 6.92-6.86 (m, 4H), 4.97 (m, 1H), 3.95 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H), 1.78 (d, \(J = 6.9\) Hz, 6H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 185.4, 167.1, 154.5, 149.9, 142.0, 137.8, 137.5, 135.8, 131.6, 130.0, 129.7, 128.3, 125.7, 125.4, 122.6, 121.3, 117.4, 109.6, 52.1, 48.2, 21.4, 21.1, 20.7; MS (ESI-MS) \(m/z\): 466.3 (M+H); HRMS (ESI) calcd for C\(_{29}\)H\(_{27}\)N\(_3\)O\(_3\)(M+H): 466.2125; Found 466.2132; IR (cm\(^{-1}\), neat): 3025, 2979, 2947, 1717, 1619, 1604, 1571.

Methyl 9-isopropyl-3-(4-methoxybenzoyl)-2-(4-methoxyphenyl)-9H-benzo
[d]imidazo[1,2-a]imidazole-6-carboxylate (5f): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 9.14 (s, 1H), 8.13 (dd, \(J = 8.7, 1.7\) Hz, 1H), 7.63 (d, \(J = 8.5\) Hz, 2H), 7.46 (d, \(J = 8.5\) Hz,
1H), 7.30-7.26 (m, 2H), 6.68-6.63 (m, 4H), 4.99 (m, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 1.79 (d, J = 6.9 Hz, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 184.9, 167.5, 162.9, 159.9, 154.1, 150.3, 138.0, 132.3, 131.9, 131.5, 127.7, 126.1, 125.9, 123.1, 121.3, 117.7, 113.8, 113.6, 110.1, 55.8, 55.7, 52.6, 48.6, 21.2; MS (ESI-MS) m/z: 498.4 (M+H)$^+$; HRMS (ESI) calcd for C$_{29}$H$_{27}$N$_3$O$_5$ (M+H)$^+$: b498.2023; Found 498.2018; IR (cm$^{-1}$, neat): 2952, 2931, 2839, 1716, 1599, 1571.

Methylbenzoyl-9-cyclopentyl-2-phenyl-9H-benzo[d]imidazo[1,2-a]
imidazole-6-carboxylate (5g): 1H NMR (300 MHz, CDCl$_3$) δ 9.28 (s, 1H), 8.15 (d, J = 8.6 Hz, 1H), 7.55-7.48 (m, 3H), 7.28-7.23 (m, 3H), 7.12-7.05 (m, 5H), 5.08 (m, 1H), 3.96 (s, 3H), 2.47-2.40 (m, 2H), 2.26-2.20 (m, 2H), 2.10-2.06 (m, 2H), 1.89-1.80 (m, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 185.5, 167.0, 154.8, 150.2, 138.5, 137.8, 134.4, 131.4, 130.2, 129.5, 128.0, 127.7, 127.6, 125.8, 125.4, 123.8, 117.6, 109.8, 56.6, 52.2, 29.9, 24.6; MS (ESI-MS) m/z: 486 (M+Na)$^+$; HRMS calcd for C$_{29}$H$_{25}$N$_3$O$_3$ (M+Na)$^+$: m/z: 486.1797; Found 486.1794; IR (cm$^{-1}$, neat): 3066, 2948, 2872, 1715, 1617, 1569.

Methyl 9-cyclopentyl-3-(4-methylbenzoyl)-2-(p-tolyl)-9H-benzo]
imidazo[1,2-a]imidazole-6-carboxylate (5h): 1H NMR (400 MHz, CDCl$_3$) δ 9.17 (d, J = 1.4 Hz, 1H), 8.14-8.12 (m, 1H), 7.48-7.44 (m, 3H), 7.21 (d, J = 6.6 Hz, 2H), 5.08 (m, 1H), 6.91-6.88 (m, 4H), 3.95 (s, 3H), 2.44-2.38 (m, 3H), 2.26 (s, 3H), 2.24 (s, 3H), 2.10 (m, 3H), 1.82 (m, 2H); 13C NMR (150 MHz,CDCl$_3$) δ 185.1, 166.5, 143.0, 140.3, 139.0, 136.8, 134.7, 131.5, 130.1, 129.7, 129.6, 128.9, 128.6, 128.6, 126.3, 125.4, 123.8, 117.8, 110.8, 57.5, 52.3, 29.9, 24.8, 21.5, 21.2; MS (ESI-MS) m/z: 492.2 (M+H)$^+$; HRMS (ESI) calcd for C$_{31}$H$_{29}$N$_3$O$_3$ (M+H)$^+$: m/z: 492.2282; Found 492.2282; IR (cm$^{-1}$, neat): 3066, 2948, 2872, 1715, 1617, 1569.

Methyl 9-cyclopentyl-3-(4-methoxybenzoyl)-2-(4-methoxyphenyl)-9H-benzo[d]
imidazo[1,2-a]imidazole-6-carboxylate (5i): 1H NMR (400 MHz, CDCl$_3$) δ 9.12 (s, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.41 (m, 1H), 7.28-7.25 (m, 2H), 6.64 (d, J = 8.2 Hz, 4H), 5.08 (s, 1H), 3.95 (s, 3H), 3.75 (s, 3H), 3.73 (s, 3H), 2.47-2.43 (m, 2H), 2.24-2.20 (m, 2H), 2.11-2.08 (m, 2H), 1.85-1.81 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 184.3, 166.9, 162.5, 159.5, 137.5, 131.8, 130.8, 125.7, 125.4, 125.4, 122.8, 117.2, 113.3, 113.1, 109.9, 109.8, 56.7, 55.3, 55.2, 52.1, 29.9, 29.1, 25.2, 24.6; MS (ESI-MS) m/z: 524.2 (M+H)$^+$; HRMS (ESI) calcd for
Methyl3-benzoyl-9-[2-(cyclohex-1-en-1-yl)ethyl]-2-phenyl-9H-benzo-[d]imidazo[1,2-ajimidazole-6-carboxylate (5j): ¹H NMR (400 MHz, CDCl₃) δ 9.26 (d, J = 1.6 Hz, 1H), 8.16 (dd, J = 8.6, 1.6 Hz, 1H), 7.55-7.50 (m, 2H), 7.40 (d, J = 8.6 Hz, 1H), 7.27-7.23 (m, 3H), 7.12-7.04 (m, 5H), 5.30 (s, 1H), 4.46 (t, J = 7.1 Hz, 2H), 3.96 (s, 1H), 2.58 (t, J = 7.0 Hz, 2H), 2.09-2.05 (m, 2H), 1.81-1.76 (m, 2H), 1.60-1.57 (m, 2H), 1.49-1.45 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 185.8, 166.8, 138.4, 137.5, 133.6, 133.1, 131.9, 130.8, 128.6, 127.5, 125.8, 125.6, 125.1, 120.8, 118.5, 111.0, 52.9, 44.4, 37.1, 28.8, 25.7, 23.2, 22.4; MS (ESI-MS) m/z: 504.4 (M+H)⁺; HRMS (ESI) calcd for C₃₂H₂₉N₃O₃ (M+H)⁺; m/z: 504.2282; Found 504.2276; IR (cm⁻¹, neat): 3063, 3022, 2929, 2852, 1717, 1676, 1622.

Methyl9-(2-methoxyethyl)-3-(3-methylbenzoyl)-2-phenyl-9H-benzo-[d]imidazo[1,2-ajimidazole-6-carboxylate (5k): ¹H NMR (300 MHz, CDCl₃) δ 9.17 (d, J = 1.6 Hz, 1H), 8.14 (dd, J = 8.6, 1.6 Hz, 1H), 7.56-7.46 (m, 3H), 7.30-7.25 (m, 2H), 7.14-7.11 (m, 3H), 6.90 (t, J = 8.6 Hz, 2H), 4.53 (t, J = 5.2 Hz, 2H), 3.95 (s, 3H), 3.89 (t, J = 5.4 Hz, 2H), 3.34 (s, 3H), 2.25 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 185.6, 167.0, 155.0, 154.2, 150.4, 139.1, 138.4, 138.0, 135.5, 134.4, 131.3, 130.1, 129.9, 129.7, 129.5, 128.3, 127.9, 127.6, 126.0, 125.4, 125.3, 70.5, 59.0, 52.2, 43.7, 21.4; MS (ESI-MS) m/z: 468.4 (M+H)⁺; HRMS (ESI) calcd for C₂₈H₂₅N₃O₄ (M+H)⁺; m/z: 468.1918; Found 468.1933; IR (cm⁻¹, neat): 2990, 2949, 2902, 2852, 1715, 1620, 1584.

Methyl 9-(2-methoxyethyl)-3-(4-methylbenzoyl)-2-(p-tolyl)-9H-benzo-[d]imidazo[1,2-ajimidazole-6-carboxylate (5l): ¹H NMR (300 MHz, CDCl₃) δ 9.16 (s, 1H), 8.15 (d, J = 8.7 Hz, 1H), 7.517.47 (m, 3H), 7.18 (d, J = 8.0 Hz, 2H), 6.93-6.87 (m, 4H), 4.53 (t, J = 5.4 Hz, 2H), 3.96 (s, 3H), 3.90 (t, J = 5.4 Hz, 2H), 3.35 (s, 3H), 2.26 (d, J = 6.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 185.3, 166.9, 154.2, 150.2, 142.0, 139.0, 137.8, 135.6, 131.4, 129.9, 129.6, 128.3, 127.9, 127.6, 126.0, 125.4, 125.3, 70.5, 59.0, 52.2, 43.7, 21.4; MS (ESI-MS) m/z: 482.3 (M+H)⁺; HRMS (ESI) calcd for C₂₉H₂₇N₃O₄ (M+H)⁺; m/z: 482.2074; Found 482.2089; IR (cm⁻¹, neat): 3034, 2984, 2948, 1717, 1678, 1621, 1605, 1584.

Methyl 3-benzoyl-9-(3-methoxypropyl)-2-phenyl-9H-benzo[d]imidazo-[1,2-ajimidazole-6-carboxylate (5m): ¹H NMR (300 MHz, CDCl₃) δ 9.26 (s, 1H), C₃₁H₂₉N₃O₃ (M+H)⁺; m/z: 524.2180; Found 524.2177; IR (cm⁻¹, neat): 3010, 2958, 2873, 1719, 1604.
8.17 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 1H), 7.27 (t, J = 8.4 Hz, 3H), 7.24-7.05 (m, 5H), 4.49 (t, J = 6.2 Hz, 2H), 3.97 (s, 3H), 3.43-3.40 (m, 2H), 3.34 (s, 3H), 2.28 (t, J = 6.2 Hz, 2H); ^13^C NMR (75 MHz, CDCl₃) δ 185.5, 167.0, 154.9, 150.4, 138.8, 138.3, 134.3, 131.5, 130.1, 129.5, 128.1, 127.7, 126.1, 125.2, 123.0, 121.9, 117.5, 109.2, 68.7, 58.7, 52.2, 40.4, 28.8; MS (ESI-MS) m/z: 468.1 (M+H)^+; HRMS (ESI) calcd for C₂₈H₂₅N₃O₄ (M+H)^+: m/z: 468.1918; Found 468.1922; IR (cm⁻¹, neat): 3056, 3010, 2975, 2952, 2923, 2857, 1715, 1657, 1619, 1584.

Methyl 9-(3-methoxypropyl)-3-(4-methylbenzoyl)-2-(p-tolyl)-9H-benzo-[d]imidazo[1,2-a]imidazole-6-carboxylate (5n): ^1H NMR (400 MHz, CDCl₃) δ 9.17 (s, 1H), 8.15 (d, J = 8.5 Hz, 1H), 7.48 (d, J = 8.2 Hz, 3H), 7.18 (d, J = 8.0 Hz, 2H), 6.92-6.87 (m, 4H), 4.47 (t, J = 6.7 Hz, 2H), 3.96 (s, 3H), 3.40 (m, 2H), 3.33 (s, 3H), 2.28-2.16 (m, 8H); ^13^C NMR (75 MHz, CDCl₃) δ 185.4, 167.0, 154.5, 150.3, 142.1, 137.9, 135.6, 129.9, 129.7, 128.3, 126.0, 125.3, 122.9, 121.7, 117.3, 109.1, 68.7, 58.6, 52.2, 40.3, 28.8, 21.4, 21.1; MS (ESI-MS) m/z: 496.3 (M+H)^+; HRMS (ESI) calcd for C₃₀H₂₉N₃O₄ (M+H)^+: m/z: 496.2231; Found 496.2229; IR (cm⁻¹, neat): 3022, 2984, 2946, 2923, 2863,2807, 1716, 1620, 1605, 1583.

Methyl 3-benzoyl-9-(furan-2-ylmethyl)-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5o): ^1H NMR (300 MHz, CDCl₃) δ 9.23 (s, 1H), 8.14 (d, J = 8.5 Hz, 1H), 7.54-7.50 (m, 3H), 7.38 (s, 1H), 7.27-7.23 (m, 3H), 7.09-7.04 (m, 5H), 6.51 (d, J = 7.2 Hz, 1H), 6.36 (d, J = 7.2 Hz, 1H), 5.53 (s, 2H), 3.95 (s, 3H); ^13^C NMR (75 MHz, CDCl₃) δ 185.6, 166.9, 154.8, 150.2, 148.0, 143.1, 138.3, 138.1, 134.2, 131.5, 130.1, 129.5, 128.1, 127.7, 126.2, 125.6, 123.5, 122.1, 117.5, 110.7, 109.8, 109.7, 52.2, 40.0; MS (ESI-MS) m/z: 476.3 (M+H)^+; HRMS (ESI) calcd for C₂₉H₂₁N₃O₄ (M+H)^+: m/z: 476.1605; Found 476.1610 IR (cm⁻¹, neat): 3122, 3060, 2951, 1717, 1620, 1585.

Methyl 9-(furan-2-ylmethyl)-3-(4-methylbenzoyl)-2-(p-tolyl)-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5p): ^1H NMR (300 MHz, CDCl₃) δ 9.14 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 3H), 7.37 (m, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.90 (t, J = 7.2 Hz, 4H), 6.50 (d, J = 7.2 Hz, 1H), 6.34 (m, 1H), 5.52 (s, 2H), 3.94 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H); ^13^C NMR (75 MHz, CDCl₃) δ 185.5, 166.9, 154.4, 150.1, 148.1, 143.1, 142.1, 138.1, 137.9, 135.6, 131.4, 129.9, 129.7, 128.3, 126.1, 125.6, 123.4, 121.9, 117.3, 110.7, 109.7, 109.6, 52.2, 40.0, 21.4, 21.2; S-8
MS (ESI-MS) \(m/z \): 504.3 (M+H); HRMS (ESI) calcd for C\(_{31}H_{25}N_3O_4\) (M+H); \(m/z \): 504.1918; Found 504.1922; IR (cm\(^{-1}\), neat): 3034, 2952, 2922, 2852, 1717, 1621, 1605, 1585.

Methyl 3-benzoyl-2-phenyl-9-(thiophen-2-ylmethyl)-9H-benzo[d]imidazole-1,2-ajimidazole-6-carboxylate (5q): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 9.23 (d, \(J = 1.6 \) Hz, 1H), 8.14 (dd, \(J = 8.6, 1.6 \) Hz, 1H), 7.59-7.53 (m, 2H), 7.45 (d, \(J = 8.6 \) Hz, 1H), 7.32-7.27 (m, 4H), 7.27-7.23 (m, 2H), 7.18-7.10 (m, 4H), 6.98 (m, 1H), 5.72 (s, 2H), 3.95 (s, 3H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 186.2, 167.0, 146.5, 141.8, 136.8, 136.5, 133.4, 132.8, 131.2, 130.1, 129.5, 128.3, 125.6, 123.5, 121.9, 110.4, 52.0, 32.1; MS (ESI-MS) \(m/z \): 492.4 (M+H); HRMS (ESI) calcd for C\(_{29}H_{21}N_3O_3S\) (M+H); \(m/z \): 492.1376; Found 492.1369; IR (cm\(^{-1}\), neat): 3060, 2949, 2852, 1716, 1621, 1586.

Methyl 9-(4-methoxyphenyl)-3-(4-methylbenzoyl)-2-(p-tolyl)-9H-benzo[d]imidazo[1,2-ajimidazole-6-carboxylate (5r): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 9.20 (s, 1H), 8.09 (dd, \(J = 8.6, 1.6 \) Hz, 1H), 7.66 (d, \(J = 8.9 \) Hz, 2H), 7.51 (d, \(J = 8.0 \) Hz, 2H), 7.44 (d, \(J = 8.6 \) Hz, 1H), 7.18 (d, \(J = 8.0 \) Hz, 2H), 7.10 (d, \(J = 8.9 \) Hz, 2H), 6.92 (d, \(J = 8.1 \) Hz, 2H), 6.85 (d, \(J = 8.1 \) Hz, 2H), 3.95 (s, 3H), 3.89 (s, 3H), 2.26 (s, 3H), 2.21 (s, 3H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 185.5, 166.9, 159.5, 154.4, 149.9, 142.2, 138.6, 137.9, 135.6, 131.4, 130.0, 129.7, 128.4, 128.2, 126.7, 126.6, 126.2, 125.4, 123.7, 121.6, 117.4, 115.3, 110.0, 55.6, 52.2, 21.4, 21.1; MS (ESI-MS) \(m/z \): 530.3 (M+H); HRMS (ESI) calcd for C\(_{33}H_{27}N_3O_4\) (M+H); \(m/z \): 530.2074; Found 530.2092; IR (cm\(^{-1}\), neat): 3031, 3005, 2949, 2839, 1717, 1621, 1564.

Methyl 9-(2-methoxyethyl)-2-(1-methyl-1H-pyrrol-2-yl)-3-picolinoyl-9H-benzo[d]imidazo[1,2-ajimidazole-6-carboxylate (5s): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 9.30 (s, 1H), 8.26 (d, \(J = 8.6 \) Hz, 1H), 8.14 (d, \(J = 8.6 \) Hz, 1H), 7.67 – 7.63 (m, 2H), 7.50 (d, \(J = 8.6 \) Hz, 1H), 7.15 (m, 1H), 6.45 (m, 1H), 5.75-5.68 (m, 2H), 4.49 (t, \(J = 6.2 \) Hz, 2H), 3.94 (s, 3H), 3.86 (t, \(J = 6.2 \) Hz, 2H), 3.74 (s, 3H), 3.31 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 183.6, 167.0, 148.1, 138.9, 136.1, 126.2, 125.4, 124.9, 123.8, 123.5, 123.3, 117.5, 114.0, 110.0, 107.8, 70.3, 59.0, 52.2, 43.7; MS (ESI): \(m/z \) 458.3 [M+H]; HRMS (ESI) calcd for C\(_{25}H_{23}N_3O_4\) (M+H); 458.1823; Found 458.1815.

Methyl 3-(1,1'-biphenyl)-4-carbonyl)-9-(2-methoxyethyl)-2-(naphthalen-2-yl)-9H-benzo[d]imidazo[1,2-ajimidazole-6-carboxylate (5t): \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta \) 10.15 (d, \(J = 7.2 \) Hz, 1H), 8.70 (d, \(J = 7.2 \) Hz, 1H), 8.28 – 8.05 (m, 3H), S-9
7.92 – 7.83 (m, 2H), 7.78 – 7.59 (m, 6H), 7.44 – 7.33 (m, 2H), 7.26 (d, J = 7.4 Hz, 1H), 7.09 (m, 1H), 6.94 – 6.82 (m, 2H), 4.51 (t, J = 6.2 Hz, 2H), 3.90 (t, J = 6.2 Hz, 2H), 3.71 (s, 3H), 3.28 (t, J = 6.2 Hz, 2H); 13C NMR (100 MHz, DMSO-d_6) δ 166.3, 152.0, 149.3, 148.8, 140.0, 137.5, 133.6, 133.3, 128.3, 127.9, 127.6, 126.6, 126.0, 124.9, 124.8, 124.3, 123.6, 121.3, 121.1, 118.2, 117.8, 112.9, 110.8, 102.8, 69.7, 58.6, 52.4; MS (ESI): m/z 580.3 [M+H]$^+$; HRMS (ESI) calcd for C$_{37}$H$_{29}$N$_3$O$_4$ (M+H)$^+$; 580.2231; Found 580.2221.

Methyl 3-(3-methoxybenzoyl)-9-(2-methoxyethyl)-2-(3-(trifluoromethyl)phenyl)-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5u): 1H NMR (400 MHz, Acetone-d_6) δ 9.26 (s, 1H), 8.14 (m, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.42 (m, 1H), 7.32 – 7.23 (m, 2H), 7.08 – 6.96 (m, 3H), 6.77 (m, 1H), 4.59 (t, J = 6.2 Hz, 2H), 3.93 (t, J = 6.2 Hz, 2H), 3.85 (s, 3H), 3.68 (s, 3H), 3.29 (s, 3H); 13C NMR (100 MHz, Acetone-d_6) δ 184.2, 166.2, 158.9, 151.8, 150.3, 140.2, 139.2, 133.7, 130.8, 128.6, 128.5, 126.0, 125.9, 125.7, 125.2, 123.4, 122.7, 121.1, 117.2, 117.1, 113.5, 110.6, 69.4, 57.9, 54.6, 51.5, 43.4; MS (ESI): m/z 530.2 [M+H]$^+$; HRMS (ESI) calcd for C$_{33}$H$_{27}$F$_3$N$_3$O$_5$ (M+H)$^+$; 530.2074; Found 530.2074.

Methyl 3-([1,1'-biphenyl]-4-carbonyl)-9-(2-methoxyethyl)-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5v): 1H NMR (400 MHz, CDCl$_3$) δ 9.19 (s, 1H), 8.17 (m, 1H), 7.62 – 7.20 (m, 12H), 7.07 – 7.01 (m, 3H), 4.51 (t, J = 6.2 Hz, 2H), 3.91 (s, 3H), 3.88 (t, J = 6.2 Hz, 2H), 3.32 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 180.1, 179.6, 161.6, 145.1, 138.8, 135.3, 135.1, 134.8, 133.8, 133.1, 131.7, 129.0, 127.9, 126.1, 125.2, 124.8, 124.2, 123.6, 123.5, 122.7, 122.2, 121.8, 121.6, 121.0, 120.7, 117.7, 116.7, 112.0, 104.9, 65.1, 53.3, 46.9, 38.4; MS (ESI): m/z 530.3 [M+H]$^+$; HRMS (ESI) calcd for C$_{33}$H$_{27}$F$_3$N$_3$O$_5$ (M+H)$^+$; 530.2074; Found 530.2074.

Methyl 3-([1,1'-biphenyl]-4-carbonyl)-9-(2-methoxyethyl)-2-(4-methoxyphenyl)-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5w): 1H NMR (400 MHz, CDCl$_3$) δ 9.19 (s, 1H), 8.07 (d, J = 7.0 Hz, 1H), 7.58 (t, J = 7.0 Hz, 2H), 7.42 – 7.15 (m, 5H), 7.33 – 7.15 (m, 5H), 6.55 (t, J = 6.6 Hz, 2H), 4.48 (t, J = 6.2 Hz, 2H), 3.91 (s, 3H), 3.85 (t, 6.2 Hz, 2H), 3.57 (s, 3H), 3.29 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 184.5, 167.0, 162.6, 153.3, 150.4, 140.6, 140.6, 139.1, 133.5, 131.8, 130.9, 130.5, 128.7, 127.4, 126.9, 126.4, 126.0, 125.3, 123.1, 121.8, 117.1, 113.1, 111.3, 110.0, 77.2, 70.5,
Methyl3-benzoyl-9-(2-methoxyethyl)-2-(4-(trifluoromethyl)phenyl)-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5x): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.24 (d, \(J = 1.6\) Hz, 1H), 8.19 (dd, \(J = 8.6, 1.6\) Hz, 1H), 7.61 – 7.52 (m, 3H), 7.42 (d, \(J = 8.1\) Hz, 2H), 7.38 – 7.31 (m, 3H), 7.14 (t, \(J = 7.6\) Hz, 2H), 4.57 (t, \(J = 6.2\) Hz, 2H), 3.99 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 185.4, 167.0, 152.8, 150.6, 139.2, 138.2, 138.1, 131.9, 130.4, 130.1, 129.5, 129.5, 128.1, 127.9, 126.4, 125.3, 124.6, 124.5, 124.5, 123.4, 117.6, 110.3, 77.3, 70.5, 59.2, 52.3, 43.9; MS (ESI): \(m/z\) 522.2 [M+H]\(^+\); HRMS (ESI): calcd for C\(_{28}\)H\(_{23}\)N\(_3\)O\(_4\)[M+H]\(^+\); 522.1635, Found; 522.1633.

Methyl9-(2-methoxyethyl)-2-(4-methoxyphenyl)-3-(4-methylbenzoyl)-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5y): \(^1\)H NMR (400 MHz, Acetone-\(d_6\)) \(\delta\) 9.26 (s, 1H), 8.10 – 8.03 (m, 2H), 7.83 – 7.71 (m, 3H), 7.31 – 7.18 (m, 3H), 7.13 – 7.05 (m, 3H), 4.61 (t, \(J = 6.4\) Hz, 2H), 3.95 – 3.92 (m, 5H), 3.30 (s, 3H); \(^{13}\)C NMR (100 MHz, Acetone-\(d_6\)) \(\delta\) 183.7, 166.3, 156.3, 150.7, 148.1, 136.3, 135.5, 129.6, 127.5, 127.3, 125.5, 123.7, 122.7, 116.9, 110.6, 69.7, 57.9, 51.5, 43.4; MS (ESI): \(m/z\) 455.3 [M+H]\(^+\); HRMS (ESI): calcd for C\(_{26}\)H\(_{22}\)N\(_4\)O\(_4\)[M+H]\(^+\); 455.1714, Found; 455.1719.

(9-(2-methoxyethyl)-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazo[3-yl](phenyl)methanone (5aa): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.57 (d, \(J = 8.2\) Hz, 1H), 7.58 – 7.52 (m, 2H), 7.47 (dd, \(J = 8.2, 1.2\) Hz, 1H), 7.37 (dt, \(J = 8.2, 1.2\) Hz, 1H), 7.31 – 7.20 (m, 4H), 7.11 – 7.00 (m, 5H), 4.49 (t, \(J = 6.2\) Hz, 2H), 3.88 (t, \(J = 6.2\) Hz, 2H), 3.34 (s,
13C NMR (100 MHz, CDCl₃) δ 185.3, 154.9, 150.1, 138.6, 135.8, 134.7, 131.3, 130.1, 129.6, 127.9, 127.6, 125.8, 124.0, 121.1, 115.9, 110.3, 70.5, 59.0, 43.4; MS (ESI): m/z 396.3 [M+H]+; HRMS (ESI): calcd for C₂₅H₂₁N₃O₂ [M+H]+: 396.1707; Found: 396.1717.

(7-chloro-9-(2-methoxyethyl)-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazol-3-yl)(phenyl)methanone (5ba): ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 8.0 Hz, 1H), 7.55 – 7.48 (m, 3H), 7.27 – 7.19 (m, 4H), 7.12 – 7.00 (m, 5H), 4.45 (t, J = 6.6 Hz, 2H), 3.86 (t, J = 6.6 Hz, 2H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.5, 154.8, 150.2, 138.3, 136.6, 134.4, 131.4, 130.1, 129.8, 129.5, 128.0, 127.6, 124.4, 121.7, 121.4, 116.8, 110.7, 70.5, 59.1, 43.7; MS (ESI): m/z 430.2 [M+H]+; HRMS (ESI): calcd for C₂₅H₂₀ClN₃O₂ [M+H]+: m/z 430.1321, found 430.1317.

3-benzoyl-9-(2-methoxyethyl)-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazole-6-carbonitrile (5ca): ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.28 – 7.22 (m, 4H), 7.01 – 7.22 (m, 5H), 4.52 (t, J = 6.4 Hz, 2H), 3.91 (t, J = 6.4 Hz, 2H), 3.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 155.0, 150.2, 138.7, 137.9, 134.0, 131.7, 130.1, 129.5, 128.3, 128.0, 127.7, 125.4, 120.0, 119.2, 111.4, 104.2, 70.6, 59.1, 44.0; MS (ESI): m/z 421.1 [M+H]+; HRMS (ESI): calcd for C₂₆H₂₁N₄O₂ [M+H]+: 421.1659, found 421.1664.

2-methoxyethyl 3-benzoyl-9-(2-methoxyethyl)-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazole-6-carboxylate (5da): ¹H NMR (300 MHz, CDCl₃) δ 9.24 (s, J = 1.6 Hz, 1H), 8.17 (dd, J = 8.6, 1.6 Hz, 1H), 7.55 (dd, J = 9.3, 7.9 Hz, 3H), 7.29 (m, 2H), 7.24 (d, J = 1.3 Hz, 1H), 7.09 (m, 5H), 4.54 (m, 4H), 3.90 (t, J = 5.2 Hz, 2H), 3.78-3.70 (m, 2H), 3.46 (s, 3H), 3.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 185.4, 166.4, 154.6, 139.2, 138.3, 134.3, 131.5, 130.1, 129.5, 128.1, 127.7, 126.2, 125.4, 123.1, 122.0, 117.6, 110.0, 70.6, 70.5, 64.0, 59.1, 59.0, 43.7; MS (ESI-MS) m/z: 498.4 (M+H)+; HRMS (ESI) calcd for C₂₉H₂₁N₃O₅ (M+H)+: 498.2023, found 498.2016; IR (cm⁻¹, neat): 3061, 2926, 2854, 1713, 1620, 1584.

(9-(2-methoxyethyl)-6-methyl-2-phenyl-9H-benzo[d]imidazo[1,2-a]imidazol-3-yl)(phenyl)methanone (5ea): ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.57 (dd, J = 8.3, 1.2 Hz, 2H), 7.34 (d, J = 8.3 Hz, 1H), 7.25 – 7.20 (m, 3H), 7.20 (m, 1H), 7.04 (m, 6H), 4.45 (t, J = 6.2 Hz, 2H), 3.85 (t, J = 6.2 Hz, 2H), 3.33 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 154.9, 138.7, 134.7, 133.8, 131.3, 131.1, 130.1,
129.6, 127.9, 127.6, 125.9, 125.0, 116.1, 109.9, 70.6, 59.0, 43.3, 21.6; MS (ESI): m/z 410.3 [M+H]+; HRMS (ESI): calcd for C_{26}H_{24}N_{3}O_{2}[M+H]+; 410.1863, Found: 410.1859.

(9-(2-methoxyethyl)-6-nitro-2-phenyl-9H-benza[d]imidazo[1,2-a]imidazol-3-yl)(phenyl)methanone (5fa): ^1^H NMR (400 MHz, CDCl$_3$) δ 9.49 (d, J = 2.2 Hz, 1H), 8.31 (dd, J = 9.0, 2.2 Hz, 1H), 7.61 – 7.49 (m, 3H), 7.26 (m, 3H), 7.08 (m, 5H), 4.55 (t, J = 6.2 Hz, 2H), 3.89 (t, J = 6.2 Hz, 2H), 3.32 (s, 3H); ^1^C NMR (100 MHz, CDCl$_3$) δ 185.5, 154.8, 141.8, 140.2, 137.9, 133.9, 131.7, 130.1, 129.5, 128.4, 127.8, 127.7, 125.0, 120.1, 112.4, 110.4, 70.6, 59.1, 44.2; MS (ESI): m/z 441.1 [M+H]+; HRMS (ESI): calcd for C$_{25}$H$_{20}$N$_{4}$O$_{4}$[M+H]+; 441.1557, Found: 441.1566.

(6-methoxy-9-(2-methoxyethyl)-2-phenyl-9H-benza[d]imidazo[1,2-a]imidazol-3-yl)(phenyl)methanone (5ga): ^1^H NMR (400 MHz, CDCl$_3$) δ 8.22 (d, J = 2.2 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.37 (d, J = 8.9 Hz, 1H), 7.24 – 7.18 (m, 3H), 7.10 – 7.03 (m, 4H), 7.03 – 6.95 (m, 2H), 4.46 (t, J = 6.2 Hz, 2H), 3.92 (s, 3H), 3.86 (t, J = 6.2 Hz, 2H), 3.34 (s, 3H); ^1^C NMR (100 MHz, CDCl$_3$) δ 185.4, 155.4, 154.9, 150.6, 138.8, 134.7, 131.2, 130.1, 129.9, 129.5, 127.9, 127.6, 127.5, 126.2, 121.4, 112.9, 110.9, 100.2, 70.7, 59.0, 56.1, 43.4; MS (ESI): m/z 426.3 [M+H]+; HRMS (ESI): calcd for C$_{26}$H$_{23}$N$_{3}$O$_{3}$[M+H]+; 426.1816, found 426.1812.

9-(2-methoxyethyl)-2-phenyl-6-(trifluoromethyl)-9H-benza[d]imidazo[1,2-a]imidazol-3-carboxylate (5ha): ^1^H NMR (300 MHz, CDCl$_3$) δ 9.24 (s, 1H), 7.65 (d, J = 8.6 Hz, 1H), 7.57 (d, J = 8.6 Hz, 1H), 7.26 – 7.50 (m, 2H), 7.28 – 7.20 (m, 3H), 7.13 – 7.01 (m, 5H), 4.52 (t, J = 6.4 Hz, 2H), 3.87 (t, J = 6.4 Hz, 2H), 3.32 (s, 3H); ^1^C NMR (75 MHz, CDCl$_3$) δ 185.6, 167.0, 154.8, 150.4, 150.4, 139.1, 138.2, 138.0, 134.2, 131.6, 130.1, 129.5, 128.2, 127.7, 125.4, 121.9, 121.2, 113.7, 113.6, 110.7, 70.6, 59.1, 43.8; MS (ESI): m/z 464.2 [M+H]+; HRMS (ESI): calcd for C$_{26}$H$_{23}$F$_{3}$N$_{3}$O$_{2}$ [M+H]+; 464.1580, found 464.1585.

Methyl 3-benzoyl-9-(2-methoxyethyl)-2-phenyl-9H-benza[d]imidazo-[1,2-a]imidazole-6-carboxylate (5ia): ^1^H NMR (300 MHz, CDCl$_3$) δ 9.24 (s, 1H), 8.15 (dd, J = 8.6, 1.4 Hz, 1H), 7.55 (t, J = 7.9 Hz, 3H), 7.26 (t, J = 8.1 Hz, 3H), 7.08 (m, 5H), 4.53 (t, J = 6.2 Hz, 2H), 3.96 (s, 3H), 3.90 (t, J = 6.2 Hz, 2H), 3.34 (s, 3H); ^1^C NMR (75 MHz, CDCl$_3$) δ 185.5, 167.0, 154.8, 150.4, 150.4, 139.1, 138.3, 134.3, 131.5, 130.1, 129.5, 128.1, 127.7, 126.1, 125.4, 123.2, 122.0, 117.4, 110.1, 70.5, 59.0,
52.2, 43.7; MS (ESI-MS) m/z: 476 (M+Na); HRMS calcd for C_{27}H_{23}N_{3}O_{4} (M+Na): 476.1586, found 476.1588; IR (cm\(^{-1}\), neat): 3066, 2925, 2851, 1711, 1623, 1586.

Phenyl(2-phenylimidazo[1,2-a]pyridin-3-yl)methanone (6a): \(^1\)H NMR (400 MHz, Acetone-\(d_6\)) \(\delta\) 9.46 (d, 1.2 Hz, 1H), 7.79 (dd, \(J = 9.0, 1.2\) Hz, 1H), 7.65 (dd, \(J = 9.0, 1.2\) Hz, 1H), 7.56 – 7.51 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.23 (m, 2H), 7.18 – 7.06 (m, 5H); \(^{13}\)C NMR (100 MHz, Acetone-\(d_6\)) \(\delta\) 186.7, 154.1, 147.2, 134.5, 131.5, 130.2, 129.5, 129.1, 128.0, 127.9, 127.7, 117.3, 114.5; MS (ESI): m/z 299.3 [M+H]; HRMS (ESI): calcd for C_{20}H_{14}N_{2}O [M+H]: 299.1179, found 299.1181.

(2-(4-nitrophenyl)imidazo[1,2-a]pyrazin-3-yl)(phenyl)methanone (6b): \(^1\)H NMR (400 MHz, Acetone-\(d_6\)) \(\delta\) 9.33 (d, \(J = 1.5\) Hz, 1H), 9.23 (dd, \(J = 7.2, 1.5\) Hz, 1H), 8.28 (d, \(J = 7.2\) Hz, 1H), 8.07 – 8.04 (m, 2H), 7.74 (d, \(J = 7.4, 2\)H), 7.64 (d, \(J = 7.4, 2\)H), 7.42 (m, 1H), 7.27 – 7.23 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 187.0, 162.5, 151.3, 147.7, 144.3, 139.5, 137.4, 133.4, 132.6, 131.0, 129.6, 128.5, 123.2, 121.0, 120.2; MS (ESI): m/z 325.2 [M+H]; HRMS (ESI): calcd for C_{19}H_{12}N_{4}O_{3} [M+H]: 345.0982, found 345.0984.

Phenyl(2-phenylimidazo[1,2-a]pyrazin-3-yl)methanone (6c): \(^1\)H NMR (400 MHz, Acetone-\(d_6\)) \(\delta\) 9.24 (s, 1H), 9.18 (dd, \(J = 7.4, 1.5\) Hz, 1H), 8.21 (d, \(J = 7.4\) Hz, 1H), 7.65 – 7.56 (m, 2H), 7.47 – 7.30 (m, 3H), 7.27 – 7.10 (m, 5H); \(^{13}\)C NMR (100 MHz, Acetone-\(d_6\)) \(\delta\) 187.2, 153.4, 143.6, 141.3, 137.9, 133.7, 132.3, 131.7, 130.2, 129.5, 128.5, 127.9, 127.7, 120.3, 120.1. MS (ESI): m/z 300.2 [M+H]; HRMS (ESI): calcd for C_{19}H_{14}N_{3}O_{3}[M+H]: 300.1131, found 300.1132.
1H NMR spectrum (300MHz) of compound 5a in CDCl$_3$
13C NMR spectrum (75MHz) of compound 5a in CDCl$_3$

S-16
ESI$^+$ Mass spectrum of compound 5a
High resolution mass (ESI+) spectrum of compound 5a
IR spectrum of compound 5a
S-19
1H NMR spectrum (300MHz) of compound 5b in CDCl$_3$

S-20
13C NMR spectrum (75MHz) of compound 5b in CDCl$_3$
Tony-n-pentyl ESI+

Chemical Formula: C_{20}H_{27}N_{2}O_{3}
Exact Mass: 465.21

ESI+ Mass spectrum of compound 5b
Tony-\(n\)-pentyl ESI+
Molecular Formula: C_{29}H_{27}N_{3}O_{3}Na
Exact Mass: 488.1950
Measured Mass: 488.1952

High resolution mass (ESI\(^+\)) spectrum of compound **5b**
IR spectrum of compound 5b
1H NMR spectrum (300MHz) of compound 5c in CDCl$_3$

S-25
\[^{13}C \text{ NMR spectrum (75MHz) of compound 5c in CDCl}_3 \]

S-26
ESI+ Mass spectrum of compound 5c

S-27
High resolution mass (ESI\(^+\)) spectrum of compound \textit{5c}
IR spectrum of compound 5c
1H NMR spectrum (300MHz) of compound 5d in CDCl3
13C NMR spectrum (150MHz) of compound 5d in CDCl3

S-19
ESI$^+$ Mass spectrum of compound $5d$

Chemical Formula: C$_2$H$_2$N$_2$O$_3$
Exact Mass: 437.17
High resolution mass (ESI+) spectrum of compound 5d
IR spectrum of compound 5d
1H NMR spectrum (300MHz) of compound 5e in CDCl$_3$
13C NMR spectrum (75MHz) of compound 5e in CDCl$_3$
Chemical Formula: C_{23}H_{27}N_{3}O_{3}
Exact Mass: 465.21

ESI\(^+\) Mass spectrum of compound 5e

S-25
High resolution mass (ESI⁺) spectrum of compound 5e
IR spectrum of compound $5e$
1H NMR spectrum (300MHz) of compound 5f in CDCl$_3$
13C NMR spectrum (150MHz) of compound 5f in CDCl$_3$
ESI⁺ Mass spectrum of compound 5f
S-30
High resolution mass (ESI+) spectrum of compound 5f

<table>
<thead>
<tr>
<th>m/z</th>
<th>Intensity</th>
<th>Relative Theo. Mass</th>
<th>Delta Mass (ppm)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>498.2018</td>
<td>4095549.3</td>
<td>100.00</td>
<td>-1.20</td>
<td>C\textsubscript{29}H\textsubscript{28}O\textsubscript{5}N\textsubscript{3}</td>
</tr>
</tbody>
</table>
IR spectrum of compound 5f
1H NMR spectrum (300MHz) of compound 5g in CDCl$_3$

S-33
13C NMR spectrum (75MHz) of compound 5g in CDCl$_3$
ESI⁺ Mass spectrum of compound 5g

S-35
Tony-cyclopentyl ESI+
Molecular Formula: C29H25N3O3Na
Exact Mass: 486.1794
Measured Mass: 486.1797

Chemical Formula: C29H25N3O3
Exact Mass: 463.1896

High resolution mass (ESI+) spectrum of compound 5g
IR spectrum of compound 5g

S-37
1H NMR spectrum (300MHz) of compound 5h in CDCl$_3$

S-38
\(^{13}\)C NMR spectrum (150MHz) of compound 5h in CDCl\(_3\)
ESI$^{+}$ Mass spectrum of compound 5h

Chemical Formula: C$_{31}$H$_{52}$N$_{2}$O$_{3}$

Exact Mass: 491.2209
High resolution mass (ESI⁺) spectrum of compound 5h
IR spectrum of compound 5h

S-42
1H NMR spectrum (400MHz) of compound 5i in CDCl$_3$
13C NMR spectrum (150MHz) of compound 5i in CDCl$_3$

S-44
cyclopentyl-PhOMe

Chemical Formula: C₃₁H₂₉N₃O₅
Exact Mass: 523.2107

ESI⁺ Mass spectrum of compound 5i
High resolution mass (ESI$^+$) spectrum of compound 5i

S-46
IR spectrum of compound 5i
1H NMR spectrum (400 MHz) of compound 5j in CDCl$_3$

S-48
^{13}C NMR spectrum (150MHz) of compound 5j in CDCl$_3$
ESI⁺ Mass spectrum of compound 5j
S-50
High resolution mass (ESI⁺) spectrum of compound 5j

<table>
<thead>
<tr>
<th>m/z</th>
<th>Intensity</th>
<th>Relative Theor. Mass</th>
<th>Delta (ppm)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.2276</td>
<td>1354612.3</td>
<td>100.00</td>
<td>-1.04</td>
<td>C₉₂H₃₀N₄O₃N₂</td>
</tr>
</tbody>
</table>

Chemical Formula: C₉₂H₃₀N₄O₃N₂
Exact Mass: 503.2209
IR spectrum of compound 5j
S-52
1H NMR spectrum (300MHz) of compound 5k in CDCl$_3$
$\text{13C NMR spectrum (75MHz) of compound 5k in CDCl}_3$

S-54
Expanding 13C NMR spectrum (75MHz) of compound 5k in CDCl$_3$
Chemical Formula: C_{20}H_{20}N_{2}O_{6}
Exact Mass: 467.18
High resolution mass (ESI⁺) spectrum of compound 5k
IR spectrum of compound 5k

S-58
1H NMR spectrum (300MHz) of compound 51 in CDCl$_3$
13C NMR spectrum (75 MHz) of compound 51 in CDCl$_3$
Expanding 13C NMR spectrum (75MHz) of compound 5I in CDCl$_3$
ESI+ Mass spectrum of compound 51

Chemical Formula: C\textsubscript{29}H\textsubscript{37}N\textsubscript{5}O\textsubscript{4}
Exact Mass: 481.20
60-Cu-2-methoxy-Phme-H#1-20 RT: 0.01-0.43 AV: 20
T: FTWS + p ESI Full ms [150.00-700.00]
m/z= 445.7723-498.4735
Isotope Min Max
C-12 0 29
H-1 0 80
O-16 0 9
N-14 0 4
Charge 1
Mass tolerance 1000.00 ppm
Nitrogen rule not used
RDB equiv -1.00-100.00
max results 1

<table>
<thead>
<tr>
<th>n/z</th>
<th>Intensity Relative</th>
<th>Theo. Mass</th>
<th>Delta (ppm)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>482.2089</td>
<td>991545.9</td>
<td>100.00</td>
<td>3.10</td>
<td>C_{25}H_{28}O_{4}N_{3}</td>
</tr>
</tbody>
</table>

Chemical Formula: C_{25}H_{27}N_{3}O_{4}
Exact Mass: 481.20

High resolution mass (ESI⁺) spectrum of compound 51
IR spectrum of compound 51

S-64
1H NMR spectrum (300MHz) of compound 5m in CDCl$_3$
13C NMR spectrum (75MHz) of compound 5m in CDCl$_3$

S-66
ESI$^+$ Mass spectrum of compound 5m
High resolution mass (ESI+) spectrum of compound 5m
IR spectrum of compound 5m

S-69
1H NMR spectrum (400MHz) of compound 5n in CDCl$_3$

S-70
13C NMR spectrum (75MHz) of compound 5n in CDCl$_3$
ESI$^+$ Mass spectrum of compound 5n

S-72
High resolution mass (ESI⁺) spectrum of compound 5n

S-73
IR spectrum of compound 5n
S-74
1H NMR spectrum (300MHz) of compound 5o in CDCl$_3$

S-75
13C NMR spectrum (75MHz) of compound 5o in CDCl$_3$
ESI⁺ Mass spectrum of compound 5o
High resolution mass (ESI⁺) spectrum of compound 5o

Chemical Formula: C_{29}H_{21}N_{2}O_{4}
Exact Mass: 476.15
IR spectrum of compound 5o
S-79
1H NMR spectrum (300MHz) of compound 5p in CDCl$_3$

S-80
13C NMR spectrum (75MHz) of compound 5p in CDCl$_3$

S-81
ESI$^+$ Mass spectrum of compound 5p

Chemical Formula: $C_{31}H_{27}N_3O_4$
Exact Mass: 503.18

S-82
High resolution mass (ESI⁺) spectrum of compound 5p

Chemical Formula: C₃₃H₂₅N₅O₄
Exact Mass: 503.18

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-12</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>H-1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>O-16</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>N-14</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Charge 1
Mass tolerance 1000.00 ppm
Nitrogen rule not used
RDB equiv -1.00-100.00

<table>
<thead>
<tr>
<th>m/z</th>
<th>Intensity Relative</th>
<th>Theo. Mass</th>
<th>Delta (ppm)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>504.1922</td>
<td>215573.9</td>
<td>100.00</td>
<td>0.75</td>
<td>C₃₁H₂₆O₄N₃</td>
</tr>
</tbody>
</table>

109-Tony-furul-phen-phen-H#1-20 RT: 0.01-0.28 AV: 20
T: FIMS + p ESI Full ms [500.00-510.00]
IR spectrum of compound 5p

S-84
1H NMR spectrum (300MHz) of compound 5q in CDCl$_3$

S-85
13C NMR spectrum (75MHz) of compound $5q$ in CDCl$_3$
ESI$^+$ Mass spectrum of compound 5q
High resolution mass (ESI+) spectrum of compound 5q
IR spectrum of compound 5q
1H NMR spectrum (300MHz) of compound 5r in CDCl$_3$

S-90
'13C NMR spectrum (75MHz) of compound 5r in CDCl₃
ESI⁺ Mass spectrum of compound 5r

S-92
High resolution mass (ESI⁺) spectrum of compound 5r
IR spectrum of compound 5r
1H NMR spectrum (400MHz) of compound 5s in CDCl$_3$
13C NMR spectrum (100MHz) of compound 5s in CDCl$_3$
ESI⁺ Mass spectrum of compound 5s
High resolution mass (ESI⁺) spectrum of compound 5s
1H NMR spectrum (400MHz) of compound 5t in DMSO-d_6
13C NMR spectrum (75MHz) of compound 5t in DMSO-d_6
ESI$^+$ Mass spectrum of compound 5t
High resolution mass (ESI⁺) spectrum of compound 5t
1H NMR spectrum (400MHz) of compound 5u in Acetone-d_6
13C NMR spectrum (100MHz) of compound 5u in Acetone-d_6
High resolution mass (ESI+) spectrum of compound 5u
1H NMR spectrum (400MHz) of compound 5v in CDCl$_3$
13C NMR spectrum (100MHz) of compound 5v in CDCl$_3$
High resolution mass (ESI⁺) spectrum of compound 5v

S-110
\(^1\)H NMR spectrum (400MHz) of compound 5w in CDCl\(_3\)
13C NMR spectrum (100MHz) of compound 5w in CDCl$_3$
Mass spectrum of compound 5w
High resolution mass (ESI\(^+\)) spectrum of compound 5w

C\(_{56}\)H\(_{50}\)N\(_x\)O\(_y\)S, 560.2180
1H NMR spectrum (400MHz) of compound 5x in CDCl$_3$
13C NMR spectrum (100MHz) of compound 5x in CDCl₃

S-116
ESI⁺ Mass spectrum of compound 5x
High resolution mass (ESI$^+$) spectrum of compound 5x
1H NMR spectrum (400MHz) of compound 5y in CDCl$_3$
$\text{C NMR spectrum (100MHz) of compound 5y in CDCl}_3$
ESI$^+$ Mass spectrum of compound 5y
High resolution mass (ESI⁺) spectrum of compound 5y
1H NMR spectrum (400MHz) of compound 5z in Acetone-d$_6$
13C NMR spectrum (100MHz) of compound 5z in Acetone-d_6
ESI$^+$ Mass spectrum of compound 5z
High resolution mass (ESI\(^+\)) spectrum of compound 5z
1H NMR spectrum (400MHz) of compound 5aa in CDCl$_3$
13C NMR spectrum (100MHz) of compound 5aa in CDCl$_3$
ESI$^+$ Mass spectrum of compound 5aa
High resolution mass (ESI⁺) spectrum of compound 5aa
1H NMR spectrum (400MHz) of compound 5ba in CDCl$_3$
13C NMR spectrum (100MHz) of compound 5ba in CDCl$_3$
E SI^+ Mass spectrum of compound 5ba
High resolution mass (ESI⁺) spectrum of compound 5ba
1H NMR spectrum (400MHz) of compound 5ca in CDCl$_3$
13C NMR spectrum (100MHz) of compound 5ca in CDCl$_3$
ESI⁺ Mass spectrum of compound 5ca
High resolution mass (ESI+) spectrum of compound 5ca
1H NMR spectrum (300MHz) of compound 5da in CDCl$_3$
13C NMR spectrum (75MHz) of compound 5da in CDCl$_3$
ESI⁺ Mass spectrum of compound 5da

S-141
High resolution mass (ESI⁺) spectrum of compound 5da
IR spectrum of compound 5da
1H NMR spectrum (400MHz) of compound 5ea in CDCl$_3$
13C NMR spectrum (100MHz) of compound 5ea in CDCl$_3$
High resolution mass (ESI⁺) spectrum of compound 5ea
1H NMR spectrum (400MHz) of compound 5fa in CDCl$_3$
13C NMR spectrum (100MHz) of compound 5fa in CDCl$_3$
ESI^+ Mass spectrum of compound 5fa
High resolution mass (ESI$^+$) spectrum of compound 5fa
\(^1\)H NMR spectrum (400MHz) of compound 5ga in CDCl\(_3\)
13C NMR spectrum (100MHz) of compound 5ga in CDCl$_3$
ESI+ Mass spectrum of compound 5ga
High resolution mass (ESI$^+$) spectrum of compound 5ga
1H NMR spectrum (400MHz) of compound 5ha in CDCl$_3$
1H NMR spectrum (100MHz) of compound 5ha in CDCl$_3$
ESI$^+$ Mass spectrum of compound 5ha
High resolution mass (ESI+) spectrum of compound 5ha
1H NMR spectrum (300MHz) of compound 5ia in CDCl$_3$
13C NMR spectrum (75MHz) of compound 5ia in CDCl$_3$
ESI$^+$ Mass spectrum of compound 5ia

S-162
Tony-2-methoxy ESI+
Molecular Formula: C27H23N3O4Na
Exact Mass: 476.1586
Measured Mass: 476.1588

High resolution mass (ESI⁺) spectrum of compound 5ia
S-163
1H NMR spectrum (400MHz) of compound 6a in Acetone-d_6
13C NMR spectrum (100MHz) of compound 6a in Acetone-d_6
ESI$^+$ Mass spectrum of compound 6a
High resolution mass (ESI⁺) spectrum of compound 6a
1H NMR spectrum (400MHz) of compound 6b in Acetone-d_6
13C NMR spectrum (100MHz) of compound 6b in Acetone-d_6
Mass spectrum of compound 6b
High resolution mass (ESI$^+$) spectrum of compound 6b
1H NMR spectrum (400MHz) of compound 6c in Acetone-d_6
13C NMR spectrum (100MHz) of compound 6c in Acetone-d_6
ESI⁺ Mass spectrum of compound 6c
High resolution mass (ESI\(^+\)) spectrum of compound 5r
1H NMR spectrum (300MHz) of compound 4a in CDCl$_3$

S-177
13C NMR spectrum (75MHz) of compound 4a in CDCl$_3$
ESI$^+$ Mass spectrum of compound 4a
High resolution mass (ESI⁺) spectrum of compound 4a
IR spectrum of compound 4a

S-181
Table 1. Crystal data and structure refinement for 121122LT_0m.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>121122lt_0m</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C29 H27 N3 O3</td>
</tr>
<tr>
<td>Formula weight</td>
<td>465.54</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1 21/n 1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a = 17.181(2) Å</td>
<td>α = 90°</td>
</tr>
<tr>
<td>b = 26.757(3) Å</td>
<td>β = 96.526(4)°</td>
</tr>
<tr>
<td>c = 21.323(3) Å</td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>9739(2) Å</td>
</tr>
<tr>
<td>Z</td>
<td>16</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.270 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.083 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>3936</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.15 x 0.03 x 0.03 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.23 to 26.32°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-21<=h<=21, -33<=k<=22, -26<=l<=26</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>78830</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>19771 [R(int) = 0.1268]</td>
</tr>
<tr>
<td>Completeness to theta = 26.32°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9486 and 0.8604</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>19771 / 0 / 1270</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.979</td>
</tr>
</tbody>
</table>
Final R indices [I>2sigma(I)]

R1 = 0.0937, wR2 = 0.2148

R indices (all data)

R1 = 0.2285, wR2 = 0.3196

Extinction coefficient

0.0107(7)

Largest diff. peak and hole

1.705 and -1.228 e.Å⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 121122LT_0m. U(eq) is defined as one third of the trace of the orthogonalized Uᵢᵣ tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>6226(2)</td>
<td>6777(1)</td>
<td>11067(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2642(2)</td>
<td>7138(1)</td>
<td>11142(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>3827(2)</td>
<td>7043(1)</td>
<td>11705(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>6765(2)</td>
<td>9183(2)</td>
<td>10749(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>3557(2)</td>
<td>9632(1)</td>
<td>11807(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>4835(2)</td>
<td>9429(1)</td>
<td>12040(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>2707(2)</td>
<td>8512(1)</td>
<td>-584(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>5872(2)</td>
<td>7906(1)</td>
<td>-1525(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>4578(2)</td>
<td>8029(1)</td>
<td>-1792(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>5609(2)</td>
<td>5430(1)</td>
<td>-1463(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>6778(2)</td>
<td>5429(1)</td>
<td>-870(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>3122(2)</td>
<td>5725(1)</td>
<td>-885(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>4711(2)</td>
<td>6803(2)</td>
<td>8918(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>5553(2)</td>
<td>6803(1)</td>
<td>9800(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>6146(3)</td>
<td>6708(2)</td>
<td>8912(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>5606(2)</td>
<td>9271(1)</td>
<td>9684(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>4477(2)</td>
<td>9343(2)</td>
<td>9054(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>N(6)</td>
<td>5737(2)</td>
<td>9123(2)</td>
<td>8653(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>N(7)</td>
<td>3742(2)</td>
<td>8303(1)</td>
<td>522(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>N(8)</td>
<td>4844(3)</td>
<td>8232(2)</td>
<td>1193(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>N(9)</td>
<td>3532(3)</td>
<td>8430(2)</td>
<td>1538(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>N(10)</td>
<td>4626(2)</td>
<td>5821(2)</td>
<td>1283(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>N(11)</td>
<td>3796(2)</td>
<td>5746(2)</td>
<td>400(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>N(12)</td>
<td>3181(3)</td>
<td>5904(2)</td>
<td>1268(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>2430(4)</td>
<td>6003(2)</td>
<td>7338(3)</td>
<td>47(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>2948(3)</td>
<td>6451(2)</td>
<td>7243(3)</td>
<td>37(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3806(3)</td>
<td>6310(2)</td>
<td>7313(3)</td>
<td>30(1)</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>4177(3)</td>
<td>4421(3)</td>
<td>5481(3)</td>
<td>6370(3)</td>
</tr>
<tr>
<td></td>
<td>6278(2)</td>
<td>6796(2)</td>
<td>6760(2)</td>
<td>6807(2)</td>
</tr>
<tr>
<td></td>
<td>7997(2)</td>
<td>8247(2)</td>
<td>9157(2)</td>
<td>9993(2)</td>
</tr>
<tr>
<td></td>
<td>4177(3)</td>
<td>4421(3)</td>
<td>5481(3)</td>
<td>6370(3)</td>
</tr>
<tr>
<td>C(41)</td>
<td>2962(4)</td>
<td>9302(2)</td>
<td>6434(3)</td>
<td>49(2)</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>C(42)</td>
<td>8923(3)</td>
<td>9522(2)</td>
<td>9630(3)</td>
<td>34(2)</td>
</tr>
<tr>
<td>C(43)</td>
<td>8125(3)</td>
<td>9502(2)</td>
<td>9671(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(44)</td>
<td>5020(3)</td>
<td>9381(2)</td>
<td>10077(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(45)</td>
<td>5021(3)</td>
<td>9420(2)</td>
<td>10723(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(46)</td>
<td>4298(3)</td>
<td>9517(2)</td>
<td>10954(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(47)</td>
<td>4276(3)</td>
<td>9524(2)</td>
<td>11649(3)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(48)</td>
<td>3454(4)</td>
<td>9575(2)</td>
<td>12464(3)</td>
<td>38(2)</td>
</tr>
<tr>
<td>C(49)</td>
<td>3601(3)</td>
<td>9574(2)</td>
<td>10541(3)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(50)</td>
<td>3599(3)</td>
<td>9530(2)</td>
<td>9892(3)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(51)</td>
<td>4317(3)</td>
<td>9428(2)</td>
<td>9669(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(52)</td>
<td>6449(3)</td>
<td>9064(2)</td>
<td>9021(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(53)</td>
<td>7120(3)</td>
<td>8870(2)</td>
<td>8716(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(54)</td>
<td>7300(3)</td>
<td>9074(2)</td>
<td>8144(3)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(55)</td>
<td>7914(3)</td>
<td>8882(2)</td>
<td>7850(3)</td>
<td>37(2)</td>
</tr>
<tr>
<td>C(56)</td>
<td>8349(3)</td>
<td>8480(2)</td>
<td>8109(3)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(57)</td>
<td>8165(3)</td>
<td>8271(2)</td>
<td>8675(3)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(58)</td>
<td>7562(3)</td>
<td>8470(2)</td>
<td>8975(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(59)</td>
<td>77(4)</td>
<td>7865(2)</td>
<td>-312(3)</td>
<td>47(2)</td>
</tr>
<tr>
<td>C(60)</td>
<td>342(4)</td>
<td>8186(2)</td>
<td>-749(3)</td>
<td>45(2)</td>
</tr>
<tr>
<td>C(61)</td>
<td>1095(3)</td>
<td>8367(2)</td>
<td>-660(3)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(62)</td>
<td>1593(3)</td>
<td>8240(2)</td>
<td>-129(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(63)</td>
<td>2430(3)</td>
<td>8401(2)</td>
<td>-94(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(64)</td>
<td>2931(3)</td>
<td>8398(2)</td>
<td>509(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(65)</td>
<td>4048(3)</td>
<td>8324(2)</td>
<td>1138(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(66)</td>
<td>5369(3)</td>
<td>8235(2)</td>
<td>1777(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(67)</td>
<td>5545(3)</td>
<td>7712(2)</td>
<td>2039(3)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(68)</td>
<td>6124(4)</td>
<td>7712(2)</td>
<td>2633(3)</td>
<td>40(2)</td>
</tr>
<tr>
<td>C(69)</td>
<td>5754(6)</td>
<td>7926(4)</td>
<td>3191(4)</td>
<td>102(4)</td>
</tr>
<tr>
<td>C(70)</td>
<td>6328(6)</td>
<td>7938(4)</td>
<td>3805(5)</td>
<td>121(4)</td>
</tr>
<tr>
<td>C(71)</td>
<td>573(3)</td>
<td>7733(2)</td>
<td>222(3)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(72)</td>
<td>1325(3)</td>
<td>7916(2)</td>
<td>318(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(73)</td>
<td>5037(3)</td>
<td>8150(2)</td>
<td>585(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(74)</td>
<td>4353(3)</td>
<td>8192(2)</td>
<td>144(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(75)</td>
<td>4376(3)</td>
<td>8136(2)</td>
<td>-492(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(76)</td>
<td>5107(3)</td>
<td>8035(2)</td>
<td>-704(3)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(77)</td>
<td>5134(3)</td>
<td>7992(2)</td>
<td>-1394(3)</td>
<td>24(1)</td>
</tr>
</tbody>
</table>

S-185
C(78)	5979(4)	7905(2)	-2187(3)	40(2)
C(79)	5780(3)	7995(2)	-260(3)	27(1)
C(80)	5766(3)	8051(2)	380(3)	24(1)
C(81)	2840(3)	8484(2)	1145(2)	23(1)
C(82)	2145(3)	8673(2)	1427(2)	20(1)
C(83)	2014(3)	8673(2)	1427(2)	20(1)
C(84)	2014(3)	8673(2)	1427(2)	20(1)
C(85)	2014(3)	8673(2)	1427(2)	20(1)
C(86)	2014(3)	8673(2)	1427(2)	20(1)
C(87)	2014(3)	8673(2)	1427(2)	20(1)
C(88)	2014(3)	8673(2)	1427(2)	20(1)
C(89)	2014(3)	8673(2)	1427(2)	20(1)
C(90)	2014(3)	8673(2)	1427(2)	20(1)
C(91)	2014(3)	8673(2)	1427(2)	20(1)
C(92)	2014(3)	8673(2)	1427(2)	20(1)
C(93)	2014(3)	8673(2)	1427(2)	20(1)
C(94)	2014(3)	8673(2)	1427(2)	20(1)
C(95)	2014(3)	8673(2)	1427(2)	20(1)
C(96)	2014(3)	8673(2)	1427(2)	20(1)
C(97)	2014(3)	8673(2)	1427(2)	20(1)
C(98)	2014(3)	8673(2)	1427(2)	20(1)
C(99)	2014(3)	8673(2)	1427(2)	20(1)
C(100)	2014(3)	8673(2)	1427(2)	20(1)
C(101)	2014(3)	8673(2)	1427(2)	20(1)
C(102)	2014(3)	8673(2)	1427(2)	20(1)
C(103)	2014(3)	8673(2)	1427(2)	20(1)
C(104)	2014(3)	8673(2)	1427(2)	20(1)
C(105)	2014(3)	8673(2)	1427(2)	20(1)
C(106)	2014(3)	8673(2)	1427(2)	20(1)
C(107)	2014(3)	8673(2)	1427(2)	20(1)
C(108)	2014(3)	8673(2)	1427(2)	20(1)
C(109)	2014(3)	8673(2)	1427(2)	20(1)
C(110)	2014(3)	8673(2)	1427(2)	20(1)
C(111)	2014(3)	8673(2)	1427(2)	20(1)
C(112)	2014(3)	8673(2)	1427(2)	20(1)
C(113)	2014(3)	8673(2)	1427(2)	20(1)
C(114)	2014(3)	8673(2)	1427(2)	20(1)

S-186
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(115)</td>
<td>571(3)</td>
<td>6387(2)</td>
<td>561(3)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(116)</td>
<td>1320(3)</td>
<td>6263(2)</td>
<td>424(3)</td>
<td>27(1)</td>
</tr>
</tbody>
</table>

Table 3. Bond lengths [Å] and angles [°] for 121122LT_0m.

<table>
<thead>
<tr>
<th>Bond</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(8)</td>
<td>1.240(6)</td>
</tr>
<tr>
<td>O(2)-C(27)</td>
<td>1.357(6)</td>
</tr>
<tr>
<td>O(2)-C(28)</td>
<td>1.447(6)</td>
</tr>
<tr>
<td>O(3)-C(27)</td>
<td>1.203(6)</td>
</tr>
<tr>
<td>O(4)-C(34)</td>
<td>1.232(6)</td>
</tr>
<tr>
<td>O(5)-C(47)</td>
<td>1.348(6)</td>
</tr>
<tr>
<td>O(5)-C(48)</td>
<td>1.441(6)</td>
</tr>
<tr>
<td>O(6)-C(47)</td>
<td>1.223(6)</td>
</tr>
<tr>
<td>O(7)-C(63)</td>
<td>1.233(6)</td>
</tr>
<tr>
<td>O(8)-C(77)</td>
<td>1.348(6)</td>
</tr>
<tr>
<td>O(8)-C(78)</td>
<td>1.443(6)</td>
</tr>
<tr>
<td>O(9)-C(77)</td>
<td>1.208(6)</td>
</tr>
<tr>
<td>O(10)-C(104)</td>
<td>1.199(6)</td>
</tr>
<tr>
<td>O(11)-C(104)</td>
<td>1.365(6)</td>
</tr>
<tr>
<td>O(11)-C(105)</td>
<td>1.435(6)</td>
</tr>
<tr>
<td>O(12)-C(95)</td>
<td>1.233(6)</td>
</tr>
<tr>
<td>N(1)-C(6)</td>
<td>1.367(6)</td>
</tr>
<tr>
<td>N(1)-C(23)</td>
<td>1.388(6)</td>
</tr>
<tr>
<td>N(1)-C(5)</td>
<td>1.462(6)</td>
</tr>
<tr>
<td>N(2)-C(6)</td>
<td>1.366(6)</td>
</tr>
<tr>
<td>N(2)-C(22)</td>
<td>1.415(6)</td>
</tr>
<tr>
<td>N(2)-C(7)</td>
<td>1.417(6)</td>
</tr>
<tr>
<td>N(3)-C(6)</td>
<td>1.317(6)</td>
</tr>
<tr>
<td>N(3)-C(13)</td>
<td>1.379(6)</td>
</tr>
<tr>
<td>N(4)-C(36)</td>
<td>1.363(6)</td>
</tr>
<tr>
<td>N(4)-C(35)</td>
<td>1.411(6)</td>
</tr>
<tr>
<td>N(4)-C(44)</td>
<td>1.412(6)</td>
</tr>
<tr>
<td>N(5)-C(36)</td>
<td>1.362(6)</td>
</tr>
<tr>
<td>N(5)-C(51)</td>
<td>1.388(6)</td>
</tr>
<tr>
<td>N(5)-C(37)</td>
<td>1.508(8)</td>
</tr>
<tr>
<td>N(6)-C(36)</td>
<td>1.331(6)</td>
</tr>
<tr>
<td>N(6)-C(52)</td>
<td>1.385(6)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>N(7)-C(65)</td>
<td>1.360(6)</td>
</tr>
<tr>
<td>N(7)-C(64)</td>
<td>1.414(6)</td>
</tr>
<tr>
<td>N(7)-C(74)</td>
<td>1.425(6)</td>
</tr>
<tr>
<td>N(8)-C(65)</td>
<td>1.381(7)</td>
</tr>
<tr>
<td>N(8)-C(73)</td>
<td>1.391(6)</td>
</tr>
<tr>
<td>N(8)-C(66)</td>
<td>1.454(6)</td>
</tr>
<tr>
<td>N(9)-C(65)</td>
<td>1.328(7)</td>
</tr>
<tr>
<td>N(9)-C(81)</td>
<td>1.383(7)</td>
</tr>
<tr>
<td>N(10)-C(93)</td>
<td>1.359(6)</td>
</tr>
<tr>
<td>N(10)-C(108)</td>
<td>1.405(6)</td>
</tr>
<tr>
<td>N(10)-C(92)</td>
<td>1.449(6)</td>
</tr>
<tr>
<td>N(11)-C(93)</td>
<td>1.374(6)</td>
</tr>
<tr>
<td>N(11)-C(101)</td>
<td>1.412(6)</td>
</tr>
<tr>
<td>N(11)-C(94)</td>
<td>1.425(6)</td>
</tr>
<tr>
<td>N(12)-C(93)</td>
<td>1.329(6)</td>
</tr>
<tr>
<td>N(12)-C(100)</td>
<td>1.359(6)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.519(8)</td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(1)-H(1C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.513(8)</td>
</tr>
<tr>
<td>C(2)-H(2A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(2)-H(2B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.528(7)</td>
</tr>
<tr>
<td>C(3)-H(3A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(3)-H(3B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.527(7)</td>
</tr>
<tr>
<td>C(4)-H(4A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(4)-H(4B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(5)-H(5A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(5)-H(5B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(7)-C(13)</td>
<td>1.410(7)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.449(7)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.511(7)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.390(8)</td>
</tr>
<tr>
<td>C(9)-C(21)</td>
<td>1.402(8)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.383(8)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.369(9)</td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(12)-C(20)</td>
<td>1.390(9)</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.466(7)</td>
</tr>
<tr>
<td>C(14)-C(19)</td>
<td>1.381(7)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.389(7)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.390(8)</td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.385(9)</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.383(8)</td>
</tr>
<tr>
<td>C(17)-H(17)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.383(8)</td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(19)-H(19)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.383(8)</td>
</tr>
<tr>
<td>C(20)-H(20)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(21)-H(21)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(22)-C(29)</td>
<td>1.370(7)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.419(7)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.388(7)</td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.382(7)</td>
</tr>
<tr>
<td>C(24)-H(24)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(25)-C(26)</td>
<td>1.413(7)</td>
</tr>
<tr>
<td>C(25)-H(25)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(26)-C(29)</td>
<td>1.392(7)</td>
</tr>
<tr>
<td>C(26)-C(27)</td>
<td>1.487(7)</td>
</tr>
<tr>
<td>C(28)-H(28A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(28)-H(28B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(28)-H(28C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(29)-H(29)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(30)-C(42)</td>
<td>1.387(8)</td>
</tr>
<tr>
<td>C(30)-C(31)</td>
<td>1.393(8)</td>
</tr>
<tr>
<td>C(30)-H(30)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(31)-C(32)</td>
<td>1.384(7)</td>
</tr>
</tbody>
</table>

S-189
C(31)-H(31) 0.9500
C(32)-C(33) 1.380(7)
C(32)-H(32) 0.9500
C(33)-C(43) 1.398(7)
C(33)-C(34) 1.507(7)
C(34)-C(35) 1.432(7)
C(35)-C(52) 1.406(7)
C(37)-C(38) 1.455(9)
C(37)-H(37A) 0.9900
C(37)-H(37B) 0.9900
C(38)-C(39) 1.588(9)
C(38)-H(38A) 0.9900
C(38)-H(38B) 0.9900
C(39)-C(40) 1.511(9)
C(39)-H(39A) 0.9900
C(39)-H(39B) 0.9900
C(40)-C(41) 1.509(8)
C(40)-H(40A) 0.9900
C(40)-H(40B) 0.9900
C(41)-H(41A) 0.9800
C(41)-H(41B) 0.9800
C(41)-H(41C) 0.9800
C(42)-C(43) 1.386(8)
C(42)-H(42) 0.9500
C(43)-H(43) 0.9500
C(44)-C(45) 1.383(7)
C(44)-C(51) 1.412(7)
C(45)-C(46) 1.412(7)
C(45)-H(45) 0.9500
C(46)-C(49) 1.413(7)
C(46)-C(47) 1.486(7)
C(48)-H(48A) 0.9800
C(48)-H(48B) 0.9800
C(48)-H(48C) 0.9800
C(49)-C(50) 1.389(7)
C(49)-H(49) 0.9500
C(50)-C(51) 1.398(7)
C(50)-H(50) 0.9500
C(52)-C(53) 1.482(7)
C(53)-C(58) 1.389(7)
C(53)-C(54) 1.403(7)
C(54)-C(55) 1.387(8)
C(54)-H(54) 0.9500
C(55)-C(56) 1.387(8)
C(55)-H(55) 0.9500
C(56)-C(57) 1.399(8)
C(56)-H(56) 0.9500
C(57)-C(58) 1.385(7)
C(57)-H(57) 0.9500
C(58)-H(58) 0.9500
C(59)-C(60) 1.382(9)
C(59)-C(71) 1.388(8)
C(59)-H(59) 0.9500
C(60)-C(61) 1.373(8)
C(60)-H(60) 0.9500
C(61)-C(62) 1.382(7)
C(61)-H(61) 0.9500
C(62)-C(72) 1.403(7)
C(62)-C(63) 1.496(7)
C(63)-C(64) 1.463(7)
C(64)-C(81) 1.402(7)
C(66)-C(67) 1.525(7)
C(66)-H(66A) 0.9900
C(66)-H(66B) 0.9900
C(67)-C(68) 1.518(8)
C(67)-H(67A) 0.9900
C(67)-H(67B) 0.9900
C(68)-C(69) 1.523(11)
C(68)-H(68A) 0.9900
C(68)-H(68B) 0.9900
C(69)-C(70) 1.546(12)
C(69)-H(69A) 0.9900
C(69)-H(69B) 0.9900
C(70)-H(70A) 0.9800
C(70)-H(70B) 0.9800
C(70)-H(70C) 0.9800
C(71)-C(72) 1.375(7)
C(71)-H(71) 0.9500
C(72)-H(72) 0.9500
C(73)-C(80) 1.399(7)
C(73)-C(74) 1.424(7)
C(74)-C(75) 1.369(7)
C(75)-C(76) 1.409(7)
C(75)-H(75) 0.9500
C(76)-C(79) 1.412(7)
C(76)-C(77) 1.483(7)
C(78)-H(78A) 0.9800
C(78)-H(78B) 0.9800
C(78)-H(78C) 0.9800
C(79)-C(80) 1.376(7)
C(79)-H(79) 0.9500
C(80)-H(80) 0.9500
C(81)-C(82) 1.486(7)
C(82)-C(87) 1.396(7)
C(82)-C(83) 1.409(7)
C(83)-C(84) 1.381(8)
C(83)-H(83) 0.9500
C(84)-C(85) 1.383(8)
C(84)-H(84) 0.9500
C(85)-C(86) 1.399(8)
C(85)-H(85) 0.9500
C(86)-C(87) 1.391(7)
C(86)-H(86) 0.9500
C(87)-H(87) 0.9500
C(88)-C(89) 1.441(10)
C(88)-H(88A) 0.9800
C(88)-H(88B) 0.9800
C(88)-H(88C) 0.9800
C(89)-C(90) 1.534(8)
C(89)-H(89A) 0.9900
C(89)-H(89B) 0.9900
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(111)-C(116)</td>
<td>1.402(7)</td>
</tr>
<tr>
<td>C(112)-C(113)</td>
<td>1.393(8)</td>
</tr>
<tr>
<td>C(112)-H(112)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(113)-C(114)</td>
<td>1.389(8)</td>
</tr>
<tr>
<td>C(113)-H(113)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(114)-C(115)</td>
<td>1.380(8)</td>
</tr>
<tr>
<td>C(114)-H(114)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(115)-C(116)</td>
<td>1.391(8)</td>
</tr>
<tr>
<td>C(115)-H(115)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(116)-H(116)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(27)-O(2)-C(28)</td>
<td>115.0(4)</td>
</tr>
<tr>
<td>C(47)-O(5)-C(48)</td>
<td>116.0(4)</td>
</tr>
<tr>
<td>C(77)-O(8)-C(78)</td>
<td>115.4(4)</td>
</tr>
<tr>
<td>C(104)-O(11)-C(105)</td>
<td>115.8(4)</td>
</tr>
<tr>
<td>C(6)-N(1)-C(23)</td>
<td>107.3(4)</td>
</tr>
<tr>
<td>C(6)-N(1)-C(5)</td>
<td>124.8(4)</td>
</tr>
<tr>
<td>C(23)-N(1)-C(5)</td>
<td>127.7(4)</td>
</tr>
<tr>
<td>C(6)-N(2)-C(22)</td>
<td>108.7(4)</td>
</tr>
<tr>
<td>C(6)-N(2)-C(7)</td>
<td>105.5(4)</td>
</tr>
<tr>
<td>C(22)-N(2)-C(7)</td>
<td>145.1(4)</td>
</tr>
<tr>
<td>C(6)-N(3)-C(13)</td>
<td>103.9(4)</td>
</tr>
<tr>
<td>C(36)-N(4)-C(35)</td>
<td>106.6(4)</td>
</tr>
<tr>
<td>C(36)-N(4)-C(44)</td>
<td>107.9(4)</td>
</tr>
<tr>
<td>C(35)-N(4)-C(44)</td>
<td>145.5(4)</td>
</tr>
<tr>
<td>C(36)-N(5)-C(51)</td>
<td>107.3(4)</td>
</tr>
<tr>
<td>C(36)-N(5)-C(37)</td>
<td>124.2(4)</td>
</tr>
<tr>
<td>C(51)-N(5)-C(37)</td>
<td>126.9(5)</td>
</tr>
<tr>
<td>C(36)-N(6)-C(52)</td>
<td>102.5(4)</td>
</tr>
<tr>
<td>C(65)-N(7)-C(64)</td>
<td>106.5(4)</td>
</tr>
<tr>
<td>C(65)-N(7)-C(74)</td>
<td>109.1(4)</td>
</tr>
<tr>
<td>C(64)-N(7)-C(74)</td>
<td>144.4(4)</td>
</tr>
<tr>
<td>C(65)-N(8)-C(66)</td>
<td>106.7(4)</td>
</tr>
<tr>
<td>C(65)-N(8)-C(66)</td>
<td>125.7(4)</td>
</tr>
<tr>
<td>C(73)-N(8)-C(66)</td>
<td>127.5(4)</td>
</tr>
<tr>
<td>C(65)-N(9)-C(81)</td>
<td>102.9(4)</td>
</tr>
<tr>
<td>C(93)-N(10)-C(108)</td>
<td>106.7(4)</td>
</tr>
</tbody>
</table>
C(93)-N(10)-C(92) 125.7(4)
C(108)-N(10)-C(92) 127.2(4)
C(93)-N(11)-C(10) 108.9(4)
C(93)-N(11)-C(94) 105.4(4)
C(101)-N(11)-C(94) 145.7(4)
C(93)-N(12)-C(100) 104.2(4)
C(2)-C(1)-H(1A) 109.5
C(2)-C(1)-H(1B) 109.5
H(1A)-C(1)-H(1B) 109.5
C(2)-C(1)-H(1C) 109.5
H(1A)-C(1)-H(1C) 109.5
H(1B)-C(1)-H(1C) 109.5
C(3)-C(2)-C(1) 111.7(5)
C(3)-C(2)-H(2A) 109.3
C(1)-C(2)-H(2A) 109.3
C(3)-C(2)-H(2B) 109.3
C(1)-C(2)-H(2B) 109.3
H(2A)-C(2)-H(2B) 107.9
C(2)-C(3)-C(4) 113.8(5)
C(2)-C(3)-H(3A) 108.8
C(4)-C(3)-H(3A) 108.8
C(2)-C(3)-H(3B) 108.8
C(4)-C(3)-H(3B) 108.8
H(3A)-C(3)-H(3B) 107.7
C(5)-C(4)-C(3) 110.4(4)
C(5)-C(4)-H(4A) 109.6
C(3)-C(4)-H(4A) 109.6
C(5)-C(4)-H(4B) 109.6
C(3)-C(4)-H(4B) 109.6
H(4A)-C(4)-H(4B) 108.1
N(1)-C(5)-C(4) 113.6(4)
N(1)-C(5)-H(5A) 108.8
C(4)-C(5)-H(5A) 108.8
N(1)-C(5)-H(5B) 108.8
C(4)-C(5)-H(5B) 108.8
H(5A)-C(5)-H(5B) 107.7
N(3)-C(6)-N(2) 114.9(5)
N(3)-C(6)-N(1) 135.1(5)
N(2)-C(6)-N(1) 109.9(4)
C(13)-C(7)-N(2) 103.9(4)
C(13)-C(7)-C(8) 136.4(5)
N(2)-C(7)-C(8) 119.7(5)
O(1)-C(8)-C(7) 120.2(5)
O(1)-C(8)-C(9) 118.2(5)
C(7)-C(8)-C(9) 121.6(5)
C(10)-C(9)-C(21) 119.1(5)
C(10)-C(9)-C(8) 122.1(5)
C(21)-C(9)-C(8) 118.5(5)
C(11)-C(10)-C(9) 120.1(6)
C(11)-C(10)-H(10) 120.0
C(9)-C(10)-H(10) 120.0
C(12)-C(11)-C(10) 120.3(6)
C(12)-C(11)-H(11) 119.9
C(10)-C(11)-H(11) 119.9
C(11)-C(12)-C(20) 120.8(6)
C(11)-C(12)-H(12) 119.6
C(20)-C(12)-H(12) 119.6
N(3)-C(13)-C(7) 111.7(5)
N(3)-C(13)-C(14) 117.2(5)
C(7)-C(13)-C(14) 130.8(5)
C(19)-C(14)-C(15) 118.1(5)
C(19)-C(14)-C(13) 123.1(5)
C(15)-C(14)-C(13) 118.7(5)
C(14)-C(15)-C(16) 121.5(5)
C(14)-C(15)-H(15) 119.3
C(16)-C(15)-H(15) 119.3
C(17)-C(16)-C(15) 119.6(6)
C(17)-C(16)-H(16) 120.2
C(15)-C(16)-H(16) 120.2
C(18)-C(17)-C(16) 119.1(6)
C(18)-C(17)-H(17) 120.5
C(16)-C(17)-H(17) 120.5
C(17)-C(18)-C(19) 120.7(6)
C(17)-C(18)-H(18) 119.6
C(19)-C(18)-H(18) 119.6
C(14)-C(19)-C(18) 120.9(6)
C(14)-C(19)-H(19) 119.5
C(18)-C(19)-H(19) 119.5
C(21)-C(20)-C(12) 119.2(6)
C(21)-C(20)-H(20) 120.4
C(12)-C(20)-H(20) 120.4
C(20)-C(21)-C(9) 120.4(6)
C(20)-C(21)-H(21) 119.8
C(9)-C(21)-H(21) 119.8
C(29)-C(22)-N(2) 134.2(5)
C(29)-C(22)-C(23) 120.9(5)
N(2)-C(22)-C(23) 104.9(4)
N(1)-C(23)-C(24) 129.9(5)
N(1)-C(23)-C(22) 109.1(4)
C(24)-C(23)-C(22) 121.0(5)
C(25)-C(24)-C(23) 117.7(5)
C(25)-C(24)-H(24) 121.2
C(23)-C(24)-H(24) 121.2
C(24)-C(25)-C(26) 121.5(5)
C(24)-C(25)-H(25) 119.2
C(26)-C(25)-H(25) 119.2
C(29)-C(26)-C(25) 120.3(5)
C(29)-C(26)-C(27) 118.1(5)
C(25)-C(26)-C(27) 121.6(5)
O(3)-C(27)-O(2) 123.6(5)
O(3)-C(27)-C(26) 125.0(5)
O(2)-C(27)-C(26) 111.4(5)
O(2)-C(28)-H(28A) 109.5
O(2)-C(28)-H(28B) 109.5
H(28A)-C(28)-H(28B) 109.5
O(2)-C(28)-H(28C) 109.5
H(28A)-C(28)-H(28C) 109.5
H(28B)-C(28)-H(28C) 109.5
C(22)-C(29)-C(26) 118.6(5)
C(22)-C(29)-H(29) 120.7
C(26)-C(29)-H(29) 120.7
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(42)-C(30)-C(31)</td>
<td>119.3(5)</td>
</tr>
<tr>
<td>C(42)-C(30)-H(30)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(31)-C(30)-H(30)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(32)-C(31)-C(30)</td>
<td>120.4(5)</td>
</tr>
<tr>
<td>C(32)-C(31)-H(31)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(30)-C(31)-H(31)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(33)-C(32)-C(31)</td>
<td>120.5(5)</td>
</tr>
<tr>
<td>C(33)-C(32)-H(32)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(31)-C(32)-H(32)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(32)-C(33)-C(43)</td>
<td>119.1(5)</td>
</tr>
<tr>
<td>C(32)-C(33)-C(34)</td>
<td>118.1(5)</td>
</tr>
<tr>
<td>C(43)-C(33)-C(34)</td>
<td>122.8(5)</td>
</tr>
<tr>
<td>O(4)-C(34)-C(35)</td>
<td>121.5(5)</td>
</tr>
<tr>
<td>O(4)-C(34)-C(33)</td>
<td>118.9(5)</td>
</tr>
<tr>
<td>C(35)-C(34)-C(33)</td>
<td>119.7(5)</td>
</tr>
<tr>
<td>C(52)-C(35)-N(4)</td>
<td>103.0(4)</td>
</tr>
<tr>
<td>C(52)-C(35)-C(34)</td>
<td>134.6(5)</td>
</tr>
<tr>
<td>N(4)-C(35)-C(34)</td>
<td>122.4(4)</td>
</tr>
<tr>
<td>N(6)-C(36)-N(5)</td>
<td>134.8(5)</td>
</tr>
<tr>
<td>N(6)-C(36)-N(4)</td>
<td>114.8(5)</td>
</tr>
<tr>
<td>N(5)-C(36)-N(4)</td>
<td>110.4(4)</td>
</tr>
<tr>
<td>C(38)-C(37)-N(5)</td>
<td>110.3(6)</td>
</tr>
<tr>
<td>C(38)-C(37)-H(37A)</td>
<td>109.6</td>
</tr>
<tr>
<td>N(5)-C(37)-H(37A)</td>
<td>109.6</td>
</tr>
<tr>
<td>C(38)-C(37)-H(37B)</td>
<td>109.6</td>
</tr>
<tr>
<td>N(5)-C(37)-H(37B)</td>
<td>109.6</td>
</tr>
<tr>
<td>H(37A)-C(37)-H(37B)</td>
<td>108.1</td>
</tr>
<tr>
<td>C(37)-C(38)-C(39)</td>
<td>107.1(6)</td>
</tr>
<tr>
<td>C(37)-C(38)-H(38A)</td>
<td>110.3</td>
</tr>
<tr>
<td>C(39)-C(38)-H(38A)</td>
<td>110.3</td>
</tr>
<tr>
<td>C(37)-C(38)-H(38B)</td>
<td>110.3</td>
</tr>
<tr>
<td>C(39)-C(38)-H(38B)</td>
<td>110.3</td>
</tr>
<tr>
<td>H(38A)-C(38)-H(38B)</td>
<td>108.5</td>
</tr>
<tr>
<td>C(40)-C(39)-C(38)</td>
<td>114.0(6)</td>
</tr>
<tr>
<td>C(40)-C(39)-H(39A)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(38)-C(39)-H(39A)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(40)-C(39)-H(39B)</td>
<td>108.8</td>
</tr>
</tbody>
</table>
C(38)-C(39)-H(39B) 108.8
H(39A)-C(39)-H(39B) 107.7
C(41)-C(40)-C(39) 111.6(6)
C(41)-C(40)-H(40A) 109.3
C(39)-C(40)-H(40A) 109.3
C(41)-C(40)-H(40B) 109.3
C(39)-C(40)-H(40B) 109.3
H(40A)-C(40)-H(40B) 108.0
C(40)-C(41)-H(41A) 109.5
C(40)-C(41)-H(41B) 109.5
H(41A)-C(41)-H(41B) 109.5
C(40)-C(41)-H(41C) 109.5
H(41A)-C(41)-H(41C) 109.5
H(41B)-C(41)-H(41C) 109.5
C(43)-C(42)-C(30) 120.1(5)
C(43)-C(42)-H(42) 120.0
C(30)-C(42)-H(42) 120.0
C(42)-C(43)-C(33) 120.5(5)
C(42)-C(43)-H(43) 119.7
C(33)-C(43)-H(43) 119.7
C(45)-C(44)-C(51) 120.8(5)
C(45)-C(44)-N(4) 133.4(5)
C(51)-C(44)-N(4) 105.8(4)
C(44)-C(45)-C(46) 117.4(5)
C(44)-C(45)-H(45) 121.3
C(46)-C(45)-H(45) 121.3
C(45)-C(46)-C(49) 121.3(5)
C(45)-C(46)-C(47) 118.2(5)
C(49)-C(46)-C(47) 120.4(5)
O(6)-C(47)-O(5) 123.0(5)
O(6)-C(47)-C(46) 124.7(5)
O(5)-C(47)-C(46) 112.3(5)
O(5)-C(48)-H(48A) 109.5
O(5)-C(48)-H(48B) 109.5
H(48A)-C(48)-H(48B) 109.5
O(5)-C(48)-H(48C) 109.5
H(48A)-C(48)-H(48C) 109.5
H(48B)-C(48)-H(48C) 109.5
C(50)-C(49)-C(46) 121.3(5)
C(50)-C(49)-H(49) 119.4
C(46)-C(49)-H(49) 119.4
C(49)-C(50)-C(51) 117.0(5)
C(49)-C(50)-H(50) 121.5
C(51)-C(50)-H(50) 121.5
N(5)-C(51)-C(50) 129.1(5)
N(5)-C(51)-C(44) 108.6(5)
C(50)-C(51)-C(44) 122.3(5)
N(6)-C(52)-C(35) 113.1(5)
N(6)-C(52)-C(53) 118.1(4)
C(35)-C(52)-C(53) 128.6(5)
C(58)-C(53)-C(54) 118.8(5)
C(58)-C(53)-C(52) 120.9(5)
C(54)-C(53)-C(52) 120.3(5)
C(55)-C(54)-C(53) 120.1(5)
C(55)-C(54)-H(54) 119.9
C(53)-C(54)-H(54) 119.9
C(54)-C(55)-C(56) 120.7(5)
C(54)-C(55)-H(55) 119.6
C(56)-C(55)-H(55) 119.6
C(55)-C(56)-C(57) 119.3(5)
C(55)-C(56)-H(56) 120.3
C(57)-C(56)-H(56) 120.3
C(58)-C(57)-C(56) 119.9(5)
C(58)-C(57)-H(57) 120.0
C(56)-C(57)-H(57) 120.0
C(57)-C(58)-C(53) 121.1(5)
C(57)-C(58)-H(58) 119.5
C(53)-C(58)-H(58) 119.5
C(60)-C(59)-C(71) 119.5(6)
C(60)-C(59)-H(59) 120.3
C(71)-C(59)-H(59) 120.3
C(61)-C(60)-C(59) 120.2(6)
C(61)-C(60)-H(60) 119.9
C(59)-C(60)-H(60) 119.9
C(60)-C(61)-C(62) 120.8(6)
C(60)-C(61)-H(61) 119.6
C(62)-C(61)-H(61) 119.6
C(61)-C(62)-C(72) 119.2(5)
C(61)-C(62)-C(63) 118.2(5)
C(72)-C(62)-C(63) 122.2(5)
O(7)-C(63)-C(64) 120.1(5)
O(7)-C(63)-C(62) 119.3(5)
C(64)-C(63)-C(62) 120.5(5)
C(81)-C(64)-N(7) 103.2(4)
C(81)-C(64)-C(63) 136.9(5)
N(7)-C(64)-C(63) 119.9(5)
N(9)-C(65)-N(7) 114.7(5)
N(9)-C(65)-N(8) 135.2(5)
N(7)-C(65)-N(8) 110.1(4)
N(8)-C(66)-C(67) 112.8(4)
N(8)-C(66)-H(66A) 109.0
C(67)-C(66)-H(66A) 109.0
N(8)-C(66)-H(66B) 109.0
C(67)-C(66)-H(66B) 109.0
H(66A)-C(66)-H(66B) 107.8
C(68)-C(67)-C(66) 112.9(4)
C(68)-C(67)-H(67A) 109.0
C(66)-C(67)-H(67A) 109.0
C(68)-C(67)-H(67B) 109.0
C(66)-C(67)-H(67B) 109.0
H(67A)-C(67)-H(67B) 107.8
C(67)-C(68)-C(69) 111.1(6)
C(67)-C(68)-H(68A) 109.4
C(69)-C(68)-H(68A) 109.4
C(67)-C(68)-H(68B) 109.4
C(69)-C(68)-H(68B) 109.4
H(68A)-C(68)-H(68B) 108.0
C(68)-C(69)-C(70) 112.7(8)
C(68)-C(69)-H(69A) 109.0
C(70)-C(69)-H(69A) 109.0
C(68)-C(69)-H(69B) 109.0
C(70)-C(69)-H(69B) 109.0
H(69A)-C(69)-H(69B) 107.8
C(69)-C(70)-H(70A) 109.5
C(69)-C(70)-H(70B) 109.5
H(70A)-C(70)-H(70B) 109.5
C(69)-C(70)-H(70C) 109.5
H(70A)-C(70)-H(70C) 109.5
H(70B)-C(70)-H(70C) 109.5
C(72)-C(71)-C(59) 120.7(6)
C(72)-C(71)-H(71) 119.7
C(59)-C(71)-H(71) 119.7
C(71)-C(72)-C(62) 119.6(5)
C(71)-C(72)-H(72) 120.2
C(62)-C(72)-H(72) 120.2
N(8)-C(73)-C(80) 129.6(5)
N(8)-C(73)-C(74) 109.7(4)
C(80)-C(73)-C(74) 120.7(5)
C(75)-C(74)-C(73) 122.0(5)
C(75)-C(74)-N(7) 133.6(5)
C(73)-C(74)-N(7) 104.4(4)
C(74)-C(75)-C(76) 117.8(5)
C(74)-C(75)-H(75) 121.1
C(76)-C(75)-H(75) 121.1
C(75)-C(76)-C(79) 119.4(5)
C(75)-C(76)-C(77) 117.6(5)
C(79)-C(76)-C(77) 123.0(5)
O(9)-C(77)-O(8) 123.8(5)
O(9)-C(77)-C(76) 125.4(5)
O(8)-C(77)-C(76) 110.8(5)
O(8)-C(78)-H(78A) 109.5
O(8)-C(78)-H(78B) 109.5
H(78A)-C(78)-H(78B) 109.5
O(8)-C(78)-H(78C) 109.5
H(78A)-C(78)-H(78C) 109.5
H(78B)-C(78)-H(78C) 109.5
C(80)-C(79)-C(76) 123.5(5)
C(80)-C(79)-H(79) 118.2
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(76)-C(79)-H(79)</td>
<td>118.2</td>
</tr>
<tr>
<td>C(79)-C(80)-C(73)</td>
<td>116.5(5)</td>
</tr>
<tr>
<td>C(79)-C(80)-H(80)</td>
<td>121.7</td>
</tr>
<tr>
<td>C(73)-C(80)-H(80)</td>
<td>121.7</td>
</tr>
<tr>
<td>N(9)-C(81)-C(64)</td>
<td>112.8(5)</td>
</tr>
<tr>
<td>N(9)-C(81)-C(82)</td>
<td>117.7(5)</td>
</tr>
<tr>
<td>C(64)-C(81)-C(82)</td>
<td>129.1(5)</td>
</tr>
<tr>
<td>C(87)-C(82)-C(83)</td>
<td>119.0(5)</td>
</tr>
<tr>
<td>C(87)-C(82)-C(81)</td>
<td>121.5(5)</td>
</tr>
<tr>
<td>C(83)-C(82)-C(81)</td>
<td>119.4(5)</td>
</tr>
<tr>
<td>C(84)-C(83)-C(82)</td>
<td>120.5(5)</td>
</tr>
<tr>
<td>C(84)-C(83)-H(83)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(82)-C(83)-H(83)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(83)-C(84)-C(85)</td>
<td>120.2(5)</td>
</tr>
<tr>
<td>C(83)-C(84)-H(84)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(85)-C(84)-H(84)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(84)-C(85)-C(86)</td>
<td>120.1(5)</td>
</tr>
<tr>
<td>C(84)-C(85)-H(85)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(86)-C(85)-H(85)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(87)-C(86)-C(85)</td>
<td>119.9(5)</td>
</tr>
<tr>
<td>C(87)-C(86)-H(86)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(85)-C(86)-H(86)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(86)-C(87)-C(82)</td>
<td>120.3(5)</td>
</tr>
<tr>
<td>C(86)-C(87)-H(87)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(82)-C(87)-H(87)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(89)-C(88)-H(88A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(89)-C(88)-H(88B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(88A)-C(88)-H(88B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(89)-C(88)-H(88C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(88A)-C(88)-H(88C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(88B)-C(88)-H(88C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(88)-C(89)-C(90)</td>
<td>117.0(6)</td>
</tr>
<tr>
<td>C(88)-C(89)-H(89A)</td>
<td>108.1</td>
</tr>
<tr>
<td>C(90)-C(89)-H(89A)</td>
<td>108.1</td>
</tr>
<tr>
<td>C(88)-C(89)-H(89B)</td>
<td>108.1</td>
</tr>
<tr>
<td>C(90)-C(89)-H(89B)</td>
<td>108.1</td>
</tr>
<tr>
<td>H(89A)-C(89)-H(89B)</td>
<td>107.3</td>
</tr>
</tbody>
</table>
C(91)-C(90)-C(89) 113.5(5)
C(91)-C(90)-H(90A) 108.9
C(89)-C(90)-H(90A) 108.9
C(91)-C(90)-H(90B) 108.9
C(89)-C(90)-H(90B) 108.9
H(90A)-C(90)-H(90B) 107.7
C(90)-C(91)-C(92) 111.6(4)
C(90)-C(91)-H(91A) 109.3
C(92)-C(91)-H(91A) 109.3
C(90)-C(91)-H(91B) 109.3
C(92)-C(91)-H(91B) 109.3
H(91A)-C(91)-H(91B) 108.0
N(10)-C(92)-C(91) 112.7(4)
N(10)-C(92)-H(92A) 109.1
C(91)-C(92)-H(92A) 109.1
N(10)-C(92)-H(92B) 109.1
C(91)-C(92)-H(92B) 109.1
H(92A)-C(92)-H(92B) 107.8
N(12)-C(93)-N(10) 135.6(5)
N(12)-C(93)-N(11) 114.5(5)
N(10)-C(93)-N(11) 109.9(4)
C(100)-C(94)-N(11) 103.5(4)
C(100)-C(94)-C(95) 136.0(5)
N(11)-C(94)-C(95) 120.5(5)
O(12)-C(95)-C(94) 121.7(5)
O(12)-C(95)-C(96) 119.2(5)
C(94)-C(95)-C(96) 119.0(5)
C(97)-C(96)-C(109) 119.7(5)
C(97)-C(96)-C(95) 118.0(5)
C(109)-C(96)-C(95) 122.1(5)
C(98)-C(97)-C(96) 119.7(6)
C(98)-C(97)-H(97) 120.1
C(96)-C(97)-H(97) 120.1
C(99)-C(98)-C(97) 119.5(6)
C(99)-C(98)-H(98) 120.3
C(97)-C(98)-H(98) 120.3
C(110)-C(99)-C(98) 120.7(6)
C(110)-C(99)-H(99) 119.7
C(98)-C(99)-H(99) 119.7
N(12)-C(100)-C(94) 112.4(5)
N(12)-C(100)-C(111) 117.2(5)
C(94)-C(100)-C(111) 130.3(5)
C(102)-C(101)-C(108) 120.8(5)
C(102)-C(101)-N(11) 134.3(5)
C(108)-C(101)-N(11) 104.9(4)
C(101)-C(102)-C(103) 117.0(5)
C(101)-C(102)-H(102) 121.5
C(103)-C(102)-H(102) 121.5
C(102)-C(103)-C(106) 121.1(5)
C(102)-C(103)-C(104) 117.7(5)
C(106)-C(103)-C(104) 121.2(5)
O(10)-C(104)-O(11) 122.5(5)
O(10)-C(104)-C(103) 126.2(5)
O(11)-C(104)-C(103) 111.3(5)
O(11)-C(105)-H(10A) 109.5
O(11)-C(105)-H(10B) 109.5
H(10A)-C(105)-H(10B) 109.5
O(11)-C(105)-H(10C) 109.5
H(10A)-C(105)-H(10C) 109.5
H(10B)-C(105)-H(10C) 109.5
C(107)-C(106)-C(103) 121.7(5)
C(107)-C(106)-H(106) 119.1
C(103)-C(106)-H(106) 119.1
C(106)-C(107)-C(108) 117.0(5)
C(106)-C(107)-H(107) 121.5
C(108)-C(107)-H(107) 121.5
C(107)-C(108)-C(101) 122.5(5)
C(107)-C(108)-N(10) 128.0(5)
C(101)-C(108)-N(10) 109.6(5)
C(110)-C(109)-C(96) 119.7(6)
C(110)-C(109)-H(109) 120.2
C(96)-C(109)-H(109) 120.2
C(99)-C(110)-C(109) 120.7(6)
C(99)-C(110)-H(110) 119.6
\[\begin{array}{ccccccc}
\text{C(109)} & \text{-} & \text{C(110)} & \text{-} & \text{H(110)} & 119.6 \\
\text{C(112)} & \text{-} & \text{C(111)} & \text{-} & \text{C(116)} & 119.1(5) \\
\text{C(116)} & \text{-} & \text{C(111)} & \text{-} & \text{C(100)} & 121.7(5) \\
\text{C(113)} & \text{-} & \text{C(112)} & \text{-} & \text{C(111)} & 120.7(5) \\
\text{C(113)} & \text{-} & \text{C(112)} & \text{-} & \text{H(112)} & 119.7 \\
\text{C(111)} & \text{-} & \text{C(112)} & \text{-} & \text{H(112)} & 119.7 \\
\text{C(114)} & \text{-} & \text{C(113)} & \text{-} & \text{C(112)} & 120.1 \\
\text{C(112)} & \text{-} & \text{C(113)} & \text{-} & \text{H(113)} & 120.1 \\
\text{C(115)} & \text{-} & \text{C(114)} & \text{-} & \text{C(113)} & 119.6(6) \\
\text{C(115)} & \text{-} & \text{C(114)} & \text{-} & \text{H(114)} & 120.2 \\
\text{C(113)} & \text{-} & \text{C(114)} & \text{-} & \text{H(114)} & 120.2 \\
\text{C(114)} & \text{-} & \text{C(115)} & \text{-} & \text{C(116)} & 121.1(5) \\
\text{C(114)} & \text{-} & \text{C(115)} & \text{-} & \text{H(115)} & 119.4 \\
\text{C(116)} & \text{-} & \text{C(115)} & \text{-} & \text{H(115)} & 119.4 \\
\text{C(115)} & \text{-} & \text{C(116)} & \text{-} & \text{C(111)} & 119.5(5) \\
\text{C(115)} & \text{-} & \text{C(116)} & \text{-} & \text{H(116)} & 120.2 \\
\text{C(111)} & \text{-} & \text{C(116)} & \text{-} & \text{H(116)} & 120.2 \\
\end{array} \]

Symmetry transformations used to generate equivalent atoms: Table 4. Anisotropic displacement parameters (\(\text{Å}^2 \times 10^3\)) for 121122LT_0m. The anisotropic displacement factor exponent takes the form:

\[-2\pi^2 [h^2 a^* a^* U_{11} + ... + 2hk a^* b^* U_{12}] \]

<table>
<thead>
<tr>
<th></th>
<th>(U^{11})</th>
<th>(U^{22})</th>
<th>(U^{33})</th>
<th>(U^{23})</th>
<th>(U^{13})</th>
<th>(U^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>30(2)</td>
<td>28(2)</td>
<td>25(2)</td>
<td>-2(2)</td>
<td>5(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>28(2)</td>
<td>33(2)</td>
<td>27(2)</td>
<td>8(2)</td>
<td>12(2)</td>
<td>5(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>33(2)</td>
<td>31(2)</td>
<td>25(2)</td>
<td>-2(2)</td>
<td>3(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>O(4)</td>
<td>28(2)</td>
<td>56(3)</td>
<td>16(2)</td>
<td>1(2)</td>
<td>4(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>O(5)</td>
<td>28(2)</td>
<td>31(2)</td>
<td>29(2)</td>
<td>-5(2)</td>
<td>14(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>O(6)</td>
<td>33(2)</td>
<td>33(2)</td>
<td>23(2)</td>
<td>-2(2)</td>
<td>4(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>O(7)</td>
<td>30(2)</td>
<td>44(2)</td>
<td>23(2)</td>
<td>9(2)</td>
<td>4(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>O(8)</td>
<td>32(2)</td>
<td>34(2)</td>
<td>28(2)</td>
<td>5(2)</td>
<td>13(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>O(9)</td>
<td>35(3)</td>
<td>34(2)</td>
<td>22(2)</td>
<td>-2(2)</td>
<td>4(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>O(10)</td>
<td>37(2)</td>
<td>35(2)</td>
<td>17(2)</td>
<td>-3(2)</td>
<td>4(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>O(11)</td>
<td>28(2)</td>
<td>30(2)</td>
<td>28(2)</td>
<td>0(2)</td>
<td>12(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>O(12)</td>
<td>29(2)</td>
<td>47(2)</td>
<td>20(2)</td>
<td>1(2)</td>
<td>5(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>N(1)</td>
<td>20(3)</td>
<td>24(2)</td>
<td>17(2)</td>
<td>-3(2)</td>
<td>0(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>N(2)</td>
<td>21(3)</td>
<td>21(2)</td>
<td>15(2)</td>
<td>-2(2)</td>
<td>3(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>N(3)</td>
<td>23(3)</td>
<td>22(2)</td>
<td>18(2)</td>
<td>0(2)</td>
<td>3(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>N(4)</td>
<td>19(2)</td>
<td>18(2)</td>
<td>21(3)</td>
<td>-1(2)</td>
<td>4(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>N(5)</td>
<td>19(3)</td>
<td>36(3)</td>
<td>23(3)</td>
<td>-2(2)</td>
<td>1(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>N(6)</td>
<td>23(3)</td>
<td>29(3)</td>
<td>18(3)</td>
<td>-2(2)</td>
<td>3(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>N(7)</td>
<td>23(3)</td>
<td>19(2)</td>
<td>18(2)</td>
<td>1(2)</td>
<td>4(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>N(8)</td>
<td>24(3)</td>
<td>23(2)</td>
<td>23(3)</td>
<td>3(2)</td>
<td>-1(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>N(9)</td>
<td>29(3)</td>
<td>23(2)</td>
<td>22(3)</td>
<td>-1(2)</td>
<td>0(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>N(10)</td>
<td>20(3)</td>
<td>22(2)</td>
<td>18(2)</td>
<td>1(2)</td>
<td>-1(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>N(11)</td>
<td>20(3)</td>
<td>20(2)</td>
<td>22(3)</td>
<td>0(2)</td>
<td>1(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>N(12)</td>
<td>25(3)</td>
<td>22(2)</td>
<td>17(2)</td>
<td>0(2)</td>
<td>1(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>45(4)</td>
<td>66(5)</td>
<td>29(4)</td>
<td>5(3)</td>
<td>-7(3)</td>
<td>-8(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>44(4)</td>
<td>44(4)</td>
<td>24(3)</td>
<td>-3(3)</td>
<td>2(3)</td>
<td>8(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>36(4)</td>
<td>29(3)</td>
<td>25(3)</td>
<td>-2(2)</td>
<td>6(3)</td>
<td>6(3)</td>
</tr>
<tr>
<td>C(4)</td>
<td>30(3)</td>
<td>31(3)</td>
<td>19(3)</td>
<td>3(2)</td>
<td>3(3)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>23(3)</td>
<td>24(3)</td>
<td>23(3)</td>
<td>0(2)</td>
<td>0(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>19(3)</td>
<td>20(3)</td>
<td>24(3)</td>
<td>-4(2)</td>
<td>2(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>16(3)</td>
<td>22(3)</td>
<td>26(3)</td>
<td>2(2)</td>
<td>-2(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>30(3)</td>
<td>15(3)</td>
<td>18(3)</td>
<td>-2(2)</td>
<td>5(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>28(3)</td>
<td>21(3)</td>
<td>28(3)</td>
<td>-8(2)</td>
<td>-1(3)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>29(3)</td>
<td>19(3)</td>
<td>39(4)</td>
<td>-6(2)</td>
<td>7(3)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>30(4)</td>
<td>33(4)</td>
<td>52(4)</td>
<td>-17(3)</td>
<td>14(3)</td>
<td>-7(3)</td>
</tr>
<tr>
<td>C(12)</td>
<td>30(4)</td>
<td>39(4)</td>
<td>62(5)</td>
<td>-26(3)</td>
<td>-3(4)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(13)</td>
<td>27(3)</td>
<td>18(3)</td>
<td>22(3)</td>
<td>1(2)</td>
<td>3(3)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>23(3)</td>
<td>23(3)</td>
<td>25(3)</td>
<td>-3(2)</td>
<td>5(3)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>25(3)</td>
<td>33(3)</td>
<td>35(4)</td>
<td>4(3)</td>
<td>1(3)</td>
<td>5(3)</td>
</tr>
<tr>
<td>C(16)</td>
<td>35(4)</td>
<td>48(4)</td>
<td>38(4)</td>
<td>-3(3)</td>
<td>13(3)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>28(4)</td>
<td>53(4)</td>
<td>47(4)</td>
<td>-4(3)</td>
<td>7(3)</td>
<td>1(3)</td>
</tr>
<tr>
<td>C(18)</td>
<td>27(4)</td>
<td>29(3)</td>
<td>44(4)</td>
<td>-4(3)</td>
<td>-4(3)</td>
<td>3(3)</td>
</tr>
<tr>
<td>C(19)</td>
<td>23(3)</td>
<td>28(3)</td>
<td>38(4)</td>
<td>1(3)</td>
<td>4(3)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>41(4)</td>
<td>39(4)</td>
<td>50(4)</td>
<td>-17(3)</td>
<td>-14(3)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(21)</td>
<td>38(4)</td>
<td>27(3)</td>
<td>31(4)</td>
<td>-8(3)</td>
<td>-4(3)</td>
<td>3(3)</td>
</tr>
<tr>
<td>C(22)</td>
<td>24(3)</td>
<td>16(3)</td>
<td>20(3)</td>
<td>1(2)</td>
<td>3(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>23(3)</td>
<td>17(3)</td>
<td>19(3)</td>
<td>1(2)</td>
<td>5(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>25(3)</td>
<td>22(3)</td>
<td>23(3)</td>
<td>3(2)</td>
<td>0(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>C(25)</td>
<td>25(3)</td>
<td>18(3)</td>
<td>32(3)</td>
<td>5(2)</td>
<td>5(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(26)</td>
<td>24(3)</td>
<td>18(3)</td>
<td>20(3)</td>
<td>3(2)</td>
<td>4(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(27)</td>
<td>23(3)</td>
<td>18(3)</td>
<td>30(4)</td>
<td>-2(2)</td>
<td>6(3)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(28)</td>
<td>39(4)</td>
<td>35(3)</td>
<td>33(4)</td>
<td>4(3)</td>
<td>20(3)</td>
<td>4(3)</td>
</tr>
<tr>
<td>C(29)</td>
<td>29(3)</td>
<td>15(3)</td>
<td>17(3)</td>
<td>1(2)</td>
<td>2(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(30)</td>
<td>24(3)</td>
<td>37(3)</td>
<td>36(4)</td>
<td>5(3)</td>
<td>8(3)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(31)</td>
<td>22(3)</td>
<td>35(3)</td>
<td>36(4)</td>
<td>1(3)</td>
<td>-2(3)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(32)</td>
<td>27(3)</td>
<td>26(3)</td>
<td>23(3)</td>
<td>0(2)</td>
<td>3(3)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(33)</td>
<td>22(3)</td>
<td>26(3)</td>
<td>14(3)</td>
<td>-1(2)</td>
<td>-2(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(34)</td>
<td>25(3)</td>
<td>23(3)</td>
<td>18(3)</td>
<td>-1(2)</td>
<td>-2(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(35)</td>
<td>16(3)</td>
<td>18(3)</td>
<td>24(3)</td>
<td>4(2)</td>
<td>6(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(36)</td>
<td>24(3)</td>
<td>26(3)</td>
<td>18(3)</td>
<td>3(2)</td>
<td>2(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(37)</td>
<td>44(4)</td>
<td>76(5)</td>
<td>28(4)</td>
<td>7(3)</td>
<td>11(3)</td>
<td>25(4)</td>
</tr>
<tr>
<td>C(38)</td>
<td>68(5)</td>
<td>41(4)</td>
<td>57(5)</td>
<td>-11(3)</td>
<td>20(4)</td>
<td>-9(3)</td>
</tr>
<tr>
<td>C(39)</td>
<td>55(5)</td>
<td>97(6)</td>
<td>38(4)</td>
<td>5(4)</td>
<td>-12(4)</td>
<td>22(4)</td>
</tr>
<tr>
<td>C(40)</td>
<td>43(4)</td>
<td>45(4)</td>
<td>22(3)</td>
<td>6(3)</td>
<td>-3(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(41)</td>
<td>66(5)</td>
<td>48(4)</td>
<td>31(4)</td>
<td>3(3)</td>
<td>-5(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(42)</td>
<td>35(4)</td>
<td>33(3)</td>
<td>36(4)</td>
<td>3(3)</td>
<td>3(3)</td>
<td>-7(3)</td>
</tr>
<tr>
<td>C(43)</td>
<td>25(3)</td>
<td>31(3)</td>
<td>21(3)</td>
<td>1(2)</td>
<td>-3(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(44)</td>
<td>24(3)</td>
<td>16(3)</td>
<td>19(3)</td>
<td>2(2)</td>
<td>6(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(45)</td>
<td>22(3)</td>
<td>17(3)</td>
<td>22(3)</td>
<td>0(2)</td>
<td>-2(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(46)</td>
<td>28(3)</td>
<td>17(3)</td>
<td>25(3)</td>
<td>-2(2)</td>
<td>9(3)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(47)</td>
<td>32(4)</td>
<td>15(3)</td>
<td>28(3)</td>
<td>-4(2)</td>
<td>3(3)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(48)</td>
<td>39(4)</td>
<td>50(4)</td>
<td>26(4)</td>
<td>-4(3)</td>
<td>18(3)</td>
<td>0(3)</td>
</tr>
<tr>
<td>C(49)</td>
<td>24(3)</td>
<td>14(3)</td>
<td>34(3)</td>
<td>0(2)</td>
<td>7(3)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(50)</td>
<td>24(3)</td>
<td>22(3)</td>
<td>28(3)</td>
<td>1(2)</td>
<td>5(3)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(51)</td>
<td>25(3)</td>
<td>23(3)</td>
<td>16(3)</td>
<td>2(2)</td>
<td>2(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(52)</td>
<td>24(3)</td>
<td>22(3)</td>
<td>16(3)</td>
<td>3(2)</td>
<td>-2(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(53)</td>
<td>22(3)</td>
<td>26(3)</td>
<td>22(3)</td>
<td>-6(2)</td>
<td>3(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(54)</td>
<td>29(4)</td>
<td>37(3)</td>
<td>22(3)</td>
<td>6(3)</td>
<td>2(3)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(55)</td>
<td>30(4)</td>
<td>61(4)</td>
<td>21(3)</td>
<td>5(3)</td>
<td>5(3)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(56)</td>
<td>24(3)</td>
<td>47(4)</td>
<td>29(4)</td>
<td>-7(3)</td>
<td>6(3)</td>
<td>4(3)</td>
</tr>
<tr>
<td>C(57)</td>
<td>31(4)</td>
<td>33(3)</td>
<td>27(3)</td>
<td>-4(3)</td>
<td>3(3)</td>
<td>0(3)</td>
</tr>
<tr>
<td>C(58)</td>
<td>27(3)</td>
<td>30(3)</td>
<td>19(3)</td>
<td>-4(2)</td>
<td>6(3)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(59)</td>
<td>25(4)</td>
<td>66(5)</td>
<td>47(4)</td>
<td>-4(4)</td>
<td>-1(3)</td>
<td>-12(3)</td>
</tr>
<tr>
<td>C(60)</td>
<td>30(4)</td>
<td>65(5)</td>
<td>38(4)</td>
<td>10(3)</td>
<td>-8(3)</td>
<td>-9(3)</td>
</tr>
<tr>
<td>C(61)</td>
<td>25(4)</td>
<td>44(4)</td>
<td>30(4)</td>
<td>11(3)</td>
<td>2(3)</td>
<td>0(3)</td>
</tr>
</tbody>
</table>

S-208
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(62)</td>
<td>20(3)</td>
<td>27(3)</td>
<td>19(3)</td>
<td>-2(2)</td>
<td>2(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(63)</td>
<td>23(3)</td>
<td>19(3)</td>
<td>16(3)</td>
<td>2(2)</td>
<td>-3(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(64)</td>
<td>22(3)</td>
<td>25(3)</td>
<td>23(3)</td>
<td>4(2)</td>
<td>6(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(65)</td>
<td>29(3)</td>
<td>16(3)</td>
<td>21(3)</td>
<td>-2(2)</td>
<td>2(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(66)</td>
<td>25(3)</td>
<td>22(3)</td>
<td>24(3)</td>
<td>-5(2)</td>
<td>-5(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(67)</td>
<td>31(4)</td>
<td>26(3)</td>
<td>32(3)</td>
<td>-2(2)</td>
<td>-2(3)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(68)</td>
<td>45(4)</td>
<td>38(4)</td>
<td>33(4)</td>
<td>2(3)</td>
<td>-17(3)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(69)</td>
<td>114(9)</td>
<td>94(7)</td>
<td>84(7)</td>
<td>-4(6)</td>
<td>-47(7)</td>
<td>-1(6)</td>
</tr>
<tr>
<td>C(70)</td>
<td>123(10)</td>
<td>112(9)</td>
<td>117(10)</td>
<td>-10(7)</td>
<td>-38(8)</td>
<td>-11(7)</td>
</tr>
<tr>
<td>C(71)</td>
<td>34(4)</td>
<td>31(3)</td>
<td>33(4)</td>
<td>3(3)</td>
<td>0(3)</td>
<td>-12(3)</td>
</tr>
<tr>
<td>C(72)</td>
<td>27(3)</td>
<td>22(3)</td>
<td>23(3)</td>
<td>0(2)</td>
<td>-2(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(73)</td>
<td>27(3)</td>
<td>13(3)</td>
<td>19(3)</td>
<td>1(2)</td>
<td>2(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(74)</td>
<td>23(3)</td>
<td>19(3)</td>
<td>22(3)</td>
<td>3(2)</td>
<td>4(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(75)</td>
<td>24(3)</td>
<td>16(3)</td>
<td>17(3)</td>
<td>2(2)</td>
<td>0(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(76)</td>
<td>23(3)</td>
<td>18(3)</td>
<td>28(3)</td>
<td>2(2)</td>
<td>9(3)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(77)</td>
<td>33(4)</td>
<td>16(3)</td>
<td>25(3)</td>
<td>0(2)</td>
<td>9(3)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(78)</td>
<td>44(4)</td>
<td>51(4)</td>
<td>27(4)</td>
<td>1(3)</td>
<td>16(3)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(79)</td>
<td>24(3)</td>
<td>21(3)</td>
<td>36(4)</td>
<td>7(2)</td>
<td>10(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(80)</td>
<td>16(3)</td>
<td>26(3)</td>
<td>29(3)</td>
<td>5(2)</td>
<td>-2(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(81)</td>
<td>25(3)</td>
<td>20(3)</td>
<td>23(3)</td>
<td>4(2)</td>
<td>4(3)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(82)</td>
<td>22(3)</td>
<td>19(3)</td>
<td>20(3)</td>
<td>-3(2)</td>
<td>4(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(83)</td>
<td>32(3)</td>
<td>25(3)</td>
<td>25(3)</td>
<td>0(2)</td>
<td>3(3)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(84)</td>
<td>33(4)</td>
<td>39(4)</td>
<td>22(3)</td>
<td>-1(3)</td>
<td>11(3)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C(85)</td>
<td>30(4)</td>
<td>42(4)</td>
<td>31(4)</td>
<td>-9(3)</td>
<td>11(3)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C(86)</td>
<td>26(3)</td>
<td>31(3)</td>
<td>38(4)</td>
<td>-2(3)</td>
<td>7(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(87)</td>
<td>26(3)</td>
<td>31(3)</td>
<td>26(3)</td>
<td>2(2)</td>
<td>7(3)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(88)</td>
<td>91(7)</td>
<td>52(5)</td>
<td>107(8)</td>
<td>31(5)</td>
<td>-42(6)</td>
<td>-11(4)</td>
</tr>
<tr>
<td>C(89)</td>
<td>133(8)</td>
<td>27(4)</td>
<td>56(5)</td>
<td>21(3)</td>
<td>-35(5)</td>
<td>-26(4)</td>
</tr>
<tr>
<td>C(90)</td>
<td>66(5)</td>
<td>31(4)</td>
<td>35(4)</td>
<td>6(3)</td>
<td>-21(3)</td>
<td>-9(3)</td>
</tr>
<tr>
<td>C(91)</td>
<td>38(4)</td>
<td>30(3)</td>
<td>26(3)</td>
<td>4(2)</td>
<td>-3(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(92)</td>
<td>26(3)</td>
<td>28(3)</td>
<td>14(3)</td>
<td>-4(2)</td>
<td>0(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(93)</td>
<td>28(3)</td>
<td>17(3)</td>
<td>15(3)</td>
<td>0(2)</td>
<td>2(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(94)</td>
<td>24(3)</td>
<td>14(3)</td>
<td>23(3)</td>
<td>0(2)</td>
<td>3(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(95)</td>
<td>27(3)</td>
<td>23(3)</td>
<td>22(3)</td>
<td>3(2)</td>
<td>6(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(96)</td>
<td>29(3)</td>
<td>25(3)</td>
<td>23(3)</td>
<td>-14(2)</td>
<td>-3(3)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(97)</td>
<td>32(4)</td>
<td>35(3)</td>
<td>27(3)</td>
<td>-8(3)</td>
<td>1(3)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>C(98)</td>
<td>39(4)</td>
<td>47(4)</td>
<td>40(4)</td>
<td>-14(3)</td>
<td>-8(3)</td>
<td>9(3)</td>
</tr>
</tbody>
</table>

S-209
Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 121122LT_0m.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>2459</td>
<td>5764</td>
<td>6994</td>
</tr>
<tr>
<td>H(1B)</td>
<td>1887</td>
<td>6115</td>
<td>7341</td>
</tr>
<tr>
<td>H(1C)</td>
<td>2610</td>
<td>5842</td>
<td>7742</td>
</tr>
<tr>
<td>H(2A)</td>
<td>2800</td>
<td>6591</td>
<td>6816</td>
</tr>
<tr>
<td>H(2B)</td>
<td>2860</td>
<td>6712</td>
<td>7556</td>
</tr>
<tr>
<td>H(3A)</td>
<td>4096</td>
<td>6561</td>
<td>7088</td>
</tr>
<tr>
<td>H(3B)</td>
<td>3864</td>
<td>5983</td>
<td>7107</td>
</tr>
<tr>
<td>H(4A)</td>
<td>3796</td>
<td>6131</td>
<td>8261</td>
</tr>
<tr>
<td>H(4B)</td>
<td>4641</td>
<td>6057</td>
<td>8024</td>
</tr>
<tr>
<td>H(5A)</td>
<td>4836</td>
<td>6926</td>
<td>8004</td>
</tr>
<tr>
<td>H(5B)</td>
<td>3966</td>
<td>7024</td>
<td>8173</td>
</tr>
<tr>
<td>H(10)</td>
<td>7582</td>
<td>7501</td>
<td>10067</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>8774</td>
<td>7866</td>
<td>10448</td>
</tr>
<tr>
<td>H(54)</td>
<td>7000</td>
<td>9345</td>
<td>7957</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>H(55)</td>
<td>8038</td>
<td>9027</td>
<td>7467</td>
</tr>
<tr>
<td>H(56)</td>
<td>8766</td>
<td>8349</td>
<td>7904</td>
</tr>
<tr>
<td>H(57)</td>
<td>8455</td>
<td>7993</td>
<td>8854</td>
</tr>
<tr>
<td>H(58)</td>
<td>7448</td>
<td>8331</td>
<td>9364</td>
</tr>
<tr>
<td>H(59)</td>
<td>-440</td>
<td>7734</td>
<td>-377</td>
</tr>
<tr>
<td>H(60)</td>
<td>2</td>
<td>8283</td>
<td>-1111</td>
</tr>
<tr>
<td>H(61)</td>
<td>1275</td>
<td>8581</td>
<td>-968</td>
</tr>
<tr>
<td>H(66A)</td>
<td>5130</td>
<td>8436</td>
<td>2096</td>
</tr>
<tr>
<td>H(66B)</td>
<td>5867</td>
<td>8399</td>
<td>1701</td>
</tr>
<tr>
<td>H(67A)</td>
<td>5050</td>
<td>7555</td>
<td>2134</td>
</tr>
<tr>
<td>H(67B)</td>
<td>5760</td>
<td>7507</td>
<td>1713</td>
</tr>
<tr>
<td>H(68A)</td>
<td>6588</td>
<td>7914</td>
<td>2561</td>
</tr>
<tr>
<td>H(68B)</td>
<td>6301</td>
<td>7366</td>
<td>2731</td>
</tr>
<tr>
<td>H(69A)</td>
<td>5292</td>
<td>7721</td>
<td>3263</td>
</tr>
<tr>
<td>H(69B)</td>
<td>5569</td>
<td>8269</td>
<td>3087</td>
</tr>
<tr>
<td>H(70A)</td>
<td>6567</td>
<td>7608</td>
<td>3880</td>
</tr>
<tr>
<td>H(70B)</td>
<td>6042</td>
<td>8029</td>
<td>4161</td>
</tr>
<tr>
<td>H(70C)</td>
<td>6738</td>
<td>8186</td>
<td>3762</td>
</tr>
<tr>
<td>H(71)</td>
<td>391</td>
<td>7515</td>
<td>525</td>
</tr>
<tr>
<td>H(72)</td>
<td>1661</td>
<td>7824</td>
<td>684</td>
</tr>
<tr>
<td>H(75)</td>
<td>3914</td>
<td>8164</td>
<td>-781</td>
</tr>
<tr>
<td>H(78A)</td>
<td>5692</td>
<td>7623</td>
<td>-2396</td>
</tr>
<tr>
<td>H(78B)</td>
<td>6538</td>
<td>7871</td>
<td>-2233</td>
</tr>
<tr>
<td>H(78C)</td>
<td>5781</td>
<td>8219</td>
<td>-2380</td>
</tr>
<tr>
<td>H(79)</td>
<td>6267</td>
<td>7925</td>
<td>-411</td>
</tr>
<tr>
<td>H(80)</td>
<td>6228</td>
<td>8023</td>
<td>668</td>
</tr>
<tr>
<td>H(83)</td>
<td>2355</td>
<td>8276</td>
<td>2253</td>
</tr>
<tr>
<td>H(84)</td>
<td>1310</td>
<td>8594</td>
<td>2732</td>
</tr>
<tr>
<td>H(85)</td>
<td>476</td>
<td>9186</td>
<td>2213</td>
</tr>
<tr>
<td>H(86)</td>
<td>678</td>
<td>9456</td>
<td>1196</td>
</tr>
<tr>
<td>H(87)</td>
<td>1718</td>
<td>9133</td>
<td>704</td>
</tr>
<tr>
<td>H(88A)</td>
<td>6869</td>
<td>5553</td>
<td>3828</td>
</tr>
<tr>
<td>H(88B)</td>
<td>6696</td>
<td>5014</td>
<td>4109</td>
</tr>
<tr>
<td>H(88C)</td>
<td>6142</td>
<td>5478</td>
<td>4226</td>
</tr>
<tr>
<td>H(89A)</td>
<td>5541</td>
<td>4977</td>
<td>3463</td>
</tr>
<tr>
<td>H(89B)</td>
<td>6279</td>
<td>5012</td>
<td>3074</td>
</tr>
</tbody>
</table>

S-212
H(90A)	5185	5797	3215	55
H(90B)	5985	5896	2920	55
H(91A)	4723	5283	2375	38
H(91B)	5555	5292	2104	38
H(92A)	4518	6132	2124	27
H(92B)	5380	6179	1916	27
H(97)	1698	5935	-1448	38
H(98)	408	5672	-1769	51
H(99)	-183	5082	-1163	54
H(10A)	4507	5563	-740	23
H(10B)	6930	5111	-1690	47
H(10C)	7716	5337	-1325	47
H(10D)	7070	5702	-1678	47
H(106)	6702	5537	228	29
H(107)	6195	5674	1184	28
H(109)	1744	5042	104	37
H(110)	482	4769	-244	48
H(112)	1863	5627	1709	32
H(113)	602	5841	1927	43
H(114)	-206	6328	1208	42
H(115)	238	6578	266	39
H(116)	1501	6377	44	32
Compound Name: 5h

Formula: C$_{31}$ H$_{29}$ N$_{3}$ O$_{3}$

Unit Cell Parameters: a 15.4841(5) b 28.1687(10) c 17.1022(5) P21/c

Table 1. Crystal data and structure refinement for 140616LT_0M.
Identification code: 140616LT_0m
Empirical formula: C31 H29 N3 O3
Formula weight: 491.57
Temperature: 100(2) K
Wavelength: 0.71073 Å
Crystal system: Monoclinic
Space group: P 21/c
Unit cell dimensions:

\[a = 15.4841(5) \, \text{Å}\]
\[b = 28.1687(10) \, \text{Å}\]
\[c = 17.1022(5) \, \text{Å}\]
\[\alpha = 90^\circ\]
\[\beta = 98.999(2)^\circ\]
\[\gamma = 90^\circ\]

Volume: 7367.6(4) Å³
Z: 12
Density (calculated): 1.330 Mg/m³
Absorption coefficient: 0.086 mm⁻¹
F(000): 3120
Crystal size: 0.30 x 0.25 x 0.03 mm³
Theta range for data collection: 1.331 to 26.411°.
Index ranges: -19 ≤ h ≤ 13, -28 ≤ k ≤ 35, -21 ≤ l ≤ 19
Reflections collected: 59484
Independent reflections: 15029 [R(int) = 0.0510]
Completeness to theta = 25.242°: 99.9 %
Absorption correction: Semi-empirical from equivalents
Max. and min. transmission: 0.9485 and 0.8258
Refinement method: Full-matrix least-squares on F²
Data / restraints / parameters: 15029 / 0 / 1009
Goodness-of-fit on F²: 1.041
Final R indices [I>2σ(I)]: R1 = 0.0789, wR2 = 0.2033
R indices (all data): R1 = 0.1260, wR2 = 0.2424
Extinction coefficient: n/a
Largest diff. peak and hole: 1.072 and -0.417 e.Å⁻³
Table 2. Atomic coordinates (× 10^4) and equivalent isotropic displacement parameters (Å^2 × 10^3) for 140616LT_0M. U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>6531(1)</td>
<td>4008(1)</td>
<td>3811(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>6438(2)</td>
<td>4768(1)</td>
<td>4171(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>6978(1)</td>
<td>6150(1)</td>
<td>2881(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>7236(1)</td>
<td>5131(1)</td>
<td>-1022(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>6956(2)</td>
<td>5910(1)</td>
<td>-1080(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>6327(1)</td>
<td>3867(1)</td>
<td>237(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>10101(1)</td>
<td>5918(1)</td>
<td>2647(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>10509(1)</td>
<td>5158(1)</td>
<td>2584(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>9681(1)</td>
<td>3824(1)</td>
<td>3806(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>7858(1)</td>
<td>5562(1)</td>
<td>1858(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>8455(1)</td>
<td>5809(1)</td>
<td>802(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>8352(1)</td>
<td>4966(1)</td>
<td>1179(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>5616(2)</td>
<td>4532(1)</td>
<td>1245(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>5010(2)</td>
<td>4363(1)</td>
<td>2333(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>N(6)</td>
<td>5243(2)</td>
<td>5184(1)</td>
<td>1851(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>N(7)</td>
<td>8837(1)</td>
<td>4450(1)</td>
<td>4810(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>N(8)</td>
<td>8326(1)</td>
<td>5068(1)</td>
<td>5414(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>N(9)</td>
<td>8215(1)</td>
<td>4238(1)</td>
<td>5872(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>8504(2)</td>
<td>8066(1)</td>
<td>-116(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>8398(2)</td>
<td>7577(1)</td>
<td>207(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>9016(2)</td>
<td>7226(1)</td>
<td>151(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>8936(2)</td>
<td>6779(1)</td>
<td>467(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>8232(2)</td>
<td>6667(1)</td>
<td>848(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>8178(2)</td>
<td>6194(1)</td>
<td>1195(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>7828(2)</td>
<td>6060(1)</td>
<td>1872(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>7683(2)</td>
<td>5140(1)</td>
<td>2241(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>7262(2)</td>
<td>5051(1)</td>
<td>2882(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>7180(2)</td>
<td>4577(1)</td>
<td>3093(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>6688(2)</td>
<td>4475(1)</td>
<td>3745(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5983(2)</td>
<td>3885(1)</td>
<td>4380(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>7514(2)</td>
<td>6324(1)</td>
<td>2505(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>7881(2)</td>
<td>6809(1)</td>
<td>2691(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>C(15)</td>
<td>8726(2)</td>
<td>6929(1)</td>
<td>2590(1)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>9034(2)</td>
<td>7385(1)</td>
<td>2729(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>8507(2)</td>
<td>7737(1)</td>
<td>2990(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>8850(2)</td>
<td>8236(1)</td>
<td>3143(2)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>7675(2)</td>
<td>7614(1)</td>
<td>3114(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>7360(2)</td>
<td>7156(1)</td>
<td>2970(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>8252(2)</td>
<td>5446(1)</td>
<td>1227(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>8013(2)</td>
<td>4771(1)</td>
<td>1812(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>7955(2)</td>
<td>4303(1)</td>
<td>2049(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>7528(2)</td>
<td>4210(1)</td>
<td>2682(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>8832(2)</td>
<td>4742(1)</td>
<td>601(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>9767(2)</td>
<td>4614(1)</td>
<td>965(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>9988(2)</td>
<td>4192(1)</td>
<td>482(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>9140(2)</td>
<td>3905(1)</td>
<td>384(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(29)</td>
<td>8423(2)</td>
<td>4284(1)</td>
<td>219(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(30)</td>
<td>7685(2)</td>
<td>7458(1)</td>
<td>569(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>7596(2)</td>
<td>7010(1)</td>
<td>878(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(32)</td>
<td>4744(2)</td>
<td>2124(1)</td>
<td>3437(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(33)</td>
<td>4879(2)</td>
<td>2601(1)</td>
<td>3082(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(34)</td>
<td>5630(2)</td>
<td>2702(1)</td>
<td>2758(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(35)</td>
<td>5755(2)</td>
<td>3137(1)</td>
<td>2420(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(36)</td>
<td>5115(2)</td>
<td>3489(1)</td>
<td>2369(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(37)</td>
<td>5220(2)</td>
<td>3946(1)</td>
<td>1978(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(38)</td>
<td>5577(2)</td>
<td>4032(1)</td>
<td>1290(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(39)</td>
<td>5870(2)</td>
<td>4922(1)</td>
<td>809(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(40)</td>
<td>6287(2)</td>
<td>4965(1)</td>
<td>157(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(41)</td>
<td>6456(2)</td>
<td>5423(1)</td>
<td>97(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(42)</td>
<td>6910(2)</td>
<td>5521(1)</td>
<td>-773(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(43)</td>
<td>7751(2)</td>
<td>5204(1)</td>
<td>-1704(2)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(44)</td>
<td>5833(2)</td>
<td>3728(1)</td>
<td>686(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(45)</td>
<td>5459(2)</td>
<td>3234(1)</td>
<td>611(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(46)</td>
<td>4609(2)</td>
<td>3131(1)</td>
<td>726(1)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(47)</td>
<td>4304(2)</td>
<td>2670(1)</td>
<td>668(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(48)</td>
<td>4840(2)</td>
<td>2296(1)</td>
<td>506(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(49)</td>
<td>4495(2)</td>
<td>1795(1)</td>
<td>474(2)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(50)</td>
<td>5679(2)</td>
<td>2401(1)</td>
<td>372(2)</td>
<td>26(1)</td>
</tr>
</tbody>
</table>

S-217
<table>
<thead>
<tr>
<th>C(51)</th>
<th>5989(2)</th>
<th>2864(1)</th>
<th>412(2)</th>
<th>22(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(52)</td>
<td>5251(2)</td>
<td>4698(1)</td>
<td>1867(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(53)</td>
<td>5621(2)</td>
<td>5326(1)</td>
<td>1215(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(54)</td>
<td>5794(2)</td>
<td>5781(1)</td>
<td>953(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(55)</td>
<td>6209(2)</td>
<td>5822(1)</td>
<td>307(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(56)</td>
<td>4914(2)</td>
<td>5516(1)</td>
<td>2396(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(57)</td>
<td>4617(3)</td>
<td>5288(1)</td>
<td>3104(2)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(58)</td>
<td>4099(2)</td>
<td>5670(1)</td>
<td>3431(2)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(59)</td>
<td>3718(3)</td>
<td>5975(1)</td>
<td>2725(2)</td>
<td>51(1)</td>
</tr>
<tr>
<td>C(60)</td>
<td>4086(2)</td>
<td>5777(1)</td>
<td>2014(2)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(61)</td>
<td>4255(2)</td>
<td>2964(1)</td>
<td>3053(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(62)</td>
<td>4366(2)</td>
<td>3398(1)</td>
<td>2697(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(63)</td>
<td>10672(2)</td>
<td>6029(1)</td>
<td>2095(2)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(64)</td>
<td>10106(2)</td>
<td>5463(1)</td>
<td>2877(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(65)</td>
<td>9584(2)</td>
<td>5386(1)</td>
<td>3517(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(66)</td>
<td>9486(2)</td>
<td>4921(1)</td>
<td>3769(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(67)</td>
<td>9037(2)</td>
<td>4855(1)</td>
<td>4397(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(68)</td>
<td>8863(2)</td>
<td>3952(1)</td>
<td>4835(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(69)</td>
<td>9154(2)</td>
<td>3668(1)</td>
<td>4212(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(70)</td>
<td>8756(2)</td>
<td>3186(1)</td>
<td>4056(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(71)</td>
<td>7899(2)</td>
<td>3090(1)</td>
<td>4158(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(72)</td>
<td>7557(2)</td>
<td>2638(1)</td>
<td>4038(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(73)</td>
<td>8059(2)</td>
<td>2268(1)</td>
<td>3817(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(74)</td>
<td>7675(2)</td>
<td>1777(1)</td>
<td>3706(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(75)</td>
<td>9216(2)</td>
<td>5766(1)</td>
<td>3877(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(76)</td>
<td>8767(2)</td>
<td>5698(1)</td>
<td>4508(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(77)</td>
<td>8697(2)</td>
<td>5240(1)</td>
<td>4779(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(78)</td>
<td>7809(2)</td>
<td>5318(1)</td>
<td>5938(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(79)</td>
<td>6956(2)</td>
<td>5530(1)</td>
<td>5512(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(80)</td>
<td>6710(2)</td>
<td>5871(1)</td>
<td>6113(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(81)</td>
<td>7574(2)</td>
<td>6096(1)</td>
<td>6482(2)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(82)</td>
<td>8288(2)</td>
<td>5732(1)</td>
<td>6403(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(83)</td>
<td>8424(2)</td>
<td>4585(1)</td>
<td>5420(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(84)</td>
<td>8498(2)</td>
<td>3840(1)</td>
<td>5512(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(85)</td>
<td>8425(2)</td>
<td>3373(1)</td>
<td>5882(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(86)</td>
<td>7719(2)</td>
<td>3277(1)</td>
<td>6269(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(87)</td>
<td>7625(2)</td>
<td>2835(1)</td>
<td>6598(2)</td>
<td>20(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 140616LT_0M.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(88)</td>
<td>8228(2)</td>
<td>2474(1)</td>
<td>6545(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(89)</td>
<td>8939(2)</td>
<td>2576(1)</td>
<td>6169(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(90)</td>
<td>9046(2)</td>
<td>3019(1)</td>
<td>5855(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(91)</td>
<td>8106(2)</td>
<td>1989(1)</td>
<td>6879(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(92)</td>
<td>8910(2)</td>
<td>2368(1)</td>
<td>3696(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(93)</td>
<td>9253(2)</td>
<td>2821(1)</td>
<td>3804(2)</td>
<td>18(1)</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>1.345(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)</td>
<td>1.204(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)</td>
<td>1.228(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)</td>
<td>1.343(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)</td>
<td>1.223(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(6)</td>
<td>1.230(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7)</td>
<td>1.342(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)</td>
<td>1.359(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)</td>
<td>1.380(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(3)</td>
<td>1.367(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(4)</td>
<td>1.389(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(5)</td>
<td>1.403(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(6)</td>
<td>1.385(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(7)</td>
<td>1.404(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(8)</td>
<td>1.380(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(9)</td>
<td>1.319(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(10)</td>
<td>1.367(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(11)</td>
<td>1.372(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(12)</td>
<td>1.370(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(13)</td>
<td>1.372(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(14)</td>
<td>1.466(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(7)-C(83)</td>
<td>1.361(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(7)-C(67)</td>
<td>1.401(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(7)-C(68)</td>
<td>1.403(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(8)-C(83)</td>
<td>1.368(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(8)-C(77)</td>
<td>1.393(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(8)-C(78)</td>
<td>1.472(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(9)-C(83)</td>
<td>1.317(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(9)-C(84)</td>
<td>1.382(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.504(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-H(24)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-H(25)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(30)</td>
<td>1.387(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.390(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.383(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-H(26)</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.390(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-H(27)</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)-C(31)</td>
<td>1.388(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.467(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.404(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-C(13)</td>
<td>1.459(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.383(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(22)</td>
<td>1.413(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.393(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-H(28)</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(24)</td>
<td>1.404(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.474(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-H(29)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-H(3)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-H(2)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.495(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.387(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(20)</td>
<td>1.400(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.378(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-H(4)</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.401(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C(16)-H(5) 0.9500
C(17)-C(19) 1.383(4)
C(17)-C(18) 1.510(4)
C(18)-H(8) 0.9800
C(18)-H(6) 0.9800
C(18)-H(7) 0.9800
C(19)-C(20) 1.387(4)
C(19)-H(9) 0.9500
C(20)-H(10) 0.9500
C(22)-C(23) 1.386(4)
C(23)-C(24) 1.379(4)
C(23)-H(12) 0.9500
C(24)-H(11) 0.9500
C(25)-C(26) 1.527(4)
C(25)-C(29) 1.539(4)
C(25)-H(13) 1.0000
C(26)-C(27) 1.516(4)
C(26)-H(14) 0.9900
C(26)-H(15) 0.9900
C(27)-C(28) 1.529(4)
C(27)-H(17) 0.9900
C(27)-H(16) 0.9900
C(28)-C(29) 1.533(4)
C(28)-H(18) 0.9900
C(28)-H(19) 0.9900
C(29)-H(21) 0.9900
C(29)-H(20) 0.9900
C(30)-C(31) 1.383(4)
C(30)-H(23) 0.9500
C(31)-H(22) 0.9500
C(32)-C(33) 1.505(4)
C(32)-H(54) 0.9800
C(32)-H(30) 0.9800
C(32)-H(53) 0.9800
C(33)-C(34) 1.393(4)
C(33)-C(61) 1.404(4)
C(34)-C(35) 1.380(4)
C(34)-H(55) 0.9500
C(35)-C(36) 1.397(4)
C(35)-H(56) 0.9500
C(36)-C(62) 1.388(4)
C(36)-C(37) 1.470(4)
C(37)-C(38) 1.397(4)
C(38)-C(44) 1.444(4)
C(39)-C(40) 1.378(4)
C(39)-C(53) 1.417(4)
C(40)-C(41) 1.401(4)
C(40)-H(57) 0.9500
C(41)-C(55) 1.403(4)
C(41)-C(42) 1.469(5)
C(43)-H(58) 0.9800
C(43)-H(31) 0.9800
C(43)-H(32) 0.9800
C(44)-C(45) 1.505(4)
C(45)-C(46) 1.391(4)
C(45)-C(51) 1.403(4)
C(46)-C(47) 1.381(4)
C(46)-H(39) 0.9500
C(47)-C(48) 1.395(4)
C(47)-H(38) 0.9500
C(48)-C(50) 1.386(4)
C(48)-C(49) 1.508(4)
C(49)-H(34) 0.9800
C(49)-H(35) 0.9800
C(49)-H(33) 0.9800
C(50)-C(51) 1.388(4)
C(50)-H(37) 0.9500
C(51)-H(36) 0.9500
C(53)-C(54) 1.397(4)
C(54)-C(55) 1.366(4)
C(54)-H(40) 0.9500
C(55)-H(41) 0.9500
C(56)-C(57) 1.505(5)
C(56)-C(60) 1.534(4)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(56)-H(42)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(57)-C(58)</td>
<td>1.501(5)</td>
</tr>
<tr>
<td>C(57)-H(50)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(57)-H(49)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(58)-C(59)</td>
<td>1.525(5)</td>
</tr>
<tr>
<td>C(58)-H(48)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(58)-H(47)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(59)-C(60)</td>
<td>1.528(4)</td>
</tr>
<tr>
<td>C(59)-H(46)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(59)-H(45)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(60)-H(44)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(60)-H(43)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(61)-C(62)</td>
<td>1.389(4)</td>
</tr>
<tr>
<td>C(61)-H(52)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(62)-H(51)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(63)-H(59)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(63)-H(87)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(63)-H(61)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(64)-C(65)</td>
<td>1.473(4)</td>
</tr>
<tr>
<td>C(65)-C(66)</td>
<td>1.396(4)</td>
</tr>
<tr>
<td>C(65)-C(75)</td>
<td>1.400(4)</td>
</tr>
<tr>
<td>C(66)-C(67)</td>
<td>1.379(4)</td>
</tr>
<tr>
<td>C(66)-H(73)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(67)-C(77)</td>
<td>1.410(4)</td>
</tr>
<tr>
<td>C(68)-C(84)</td>
<td>1.401(4)</td>
</tr>
<tr>
<td>C(68)-C(69)</td>
<td>1.460(3)</td>
</tr>
<tr>
<td>C(69)-C(70)</td>
<td>1.498(4)</td>
</tr>
<tr>
<td>C(70)-C(71)</td>
<td>1.391(4)</td>
</tr>
<tr>
<td>C(70)-C(93)</td>
<td>1.392(4)</td>
</tr>
<tr>
<td>C(71)-C(72)</td>
<td>1.381(4)</td>
</tr>
<tr>
<td>C(71)-H(81)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(72)-C(73)</td>
<td>1.388(4)</td>
</tr>
<tr>
<td>C(72)-H(86)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(73)-C(92)</td>
<td>1.394(4)</td>
</tr>
<tr>
<td>C(73)-C(74)</td>
<td>1.506(4)</td>
</tr>
<tr>
<td>C(74)-H(60)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(74)-H(84)</td>
<td>0.9800</td>
</tr>
</tbody>
</table>
C(74)-H(85) 0.9800
C(75)-C(76) 1.385(4)
C(75)-H(62) 0.9500
C(76)-C(77) 1.383(4)
C(76)-H(63) 0.9500
C(78)-C(79) 1.526(4)
C(78)-C(82) 1.536(4)
C(78)-H(72) 1.0000
C(79)-C(80) 1.500(4)
C(79)-H(70) 0.9900
C(79)-H(71) 0.9900
C(80)-C(81) 1.525(4)
C(80)-H(69) 0.9900
C(80)-H(68) 0.9900
C(81)-C(82) 1.529(4)
C(81)-H(67) 0.9900
C(81)-H(66) 0.9900
C(82)-H(64) 0.9900
C(82)-H(65) 0.9900
C(84)-C(85) 1.472(4)
C(85)-C(86) 1.390(4)
C(85)-C(90) 1.392(4)
C(86)-C(87) 1.383(4)
C(86)-H(80) 0.9500
C(87)-C(88) 1.392(4)
C(87)-H(79) 0.9500
C(88)-C(89) 1.389(4)
C(88)-C(91) 1.504(4)
C(89)-C(90) 1.379(4)
C(89)-H(75) 0.9500
C(90)-H(74) 0.9500
C(91)-H(77) 0.9800
C(91)-H(78) 0.9800
C(91)-H(76) 0.9800
C(92)-C(93) 1.383(4)
C(92)-H(82) 0.9500
C(93)-H(83) 0.9500
C(11)-O(1)-C(12) 115.4(2)
C(42)-O(4)-C(43) 115.2(3)
C(64)-O(7)-C(63) 115.3(2)
C(21)-N(1)-C(8) 108.2(2)
C(21)-N(1)-C(7) 105.8(2)
C(8)-N(1)-C(7) 146.0(2)
C(21)-N(2)-C(6) 102.7(2)
C(21)-N(3)-C(22) 106.5(2)
C(21)-N(3)-C(25) 122.6(2)
C(22)-N(3)-C(25) 130.5(2)
C(52)-N(4)-C(38) 105.8(2)
C(52)-N(4)-C(39) 109.1(2)
C(38)-N(4)-C(39) 145.1(2)
C(52)-N(5)-C(37) 103.5(2)
C(52)-N(6)-C(53) 107.6(2)
C(52)-N(6)-C(56) 128.9(3)
C(53)-N(6)-C(56) 123.5(3)
C(83)-N(7)-C(67) 109.1(2)
C(83)-N(7)-C(68) 105.7(2)
C(67)-N(7)-C(68) 145.2(2)
C(83)-N(8)-C(77) 107.0(2)
C(83)-N(8)-C(78) 122.8(2)
C(77)-N(8)-C(78) 129.7(2)
C(83)-N(9)-C(84) 102.5(2)
C(2)-C(1)-H(24) 109.5
C(2)-C(1)-H(1) 109.5
H(24)-C(1)-H(1) 109.5
C(2)-C(1)-H(25) 109.5
H(24)-C(1)-H(25) 109.5
H(1)-C(1)-H(25) 109.5
C(30)-C(2)-C(3) 117.6(3)
C(30)-C(2)-C(1) 121.8(3)
C(3)-C(2)-C(1) 120.7(3)
C(4)-C(3)-C(2) 121.0(3)
C(4)-C(3)-H(26) 119.5
C(2)-C(3)-H(26) 119.5

S-225
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>120.9(3)</td>
</tr>
<tr>
<td>C(3)-C(4)-H(27)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(5)-C(4)-H(27)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(31)-C(5)-C(4)</td>
<td>118.2(3)</td>
</tr>
<tr>
<td>C(31)-C(5)-C(6)</td>
<td>122.1(2)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>119.7(2)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(7)</td>
<td>112.3(2)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(5)</td>
<td>118.3(2)</td>
</tr>
<tr>
<td>C(7)-C(6)-C(5)</td>
<td>129.2(2)</td>
</tr>
<tr>
<td>C(6)-C(7)-N(1)</td>
<td>103.7(2)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(13)</td>
<td>133.8(2)</td>
</tr>
<tr>
<td>N(1)-C(7)-C(13)</td>
<td>122.5(2)</td>
</tr>
<tr>
<td>C(9)-C(8)-N(1)</td>
<td>132.3(2)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(22)</td>
<td>122.0(2)</td>
</tr>
<tr>
<td>N(1)-C(8)-C(22)</td>
<td>105.6(2)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>116.9(3)</td>
</tr>
<tr>
<td>C(8)-C(9)-H(28)</td>
<td>121.5</td>
</tr>
<tr>
<td>C(10)-C(9)-H(28)</td>
<td>121.5</td>
</tr>
<tr>
<td>C(9)-C(10)-C(24)</td>
<td>121.2(3)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(11)</td>
<td>117.6(3)</td>
</tr>
<tr>
<td>C(24)-C(10)-C(11)</td>
<td>121.2(3)</td>
</tr>
<tr>
<td>O(2)-C(11)-O(1)</td>
<td>122.7(3)</td>
</tr>
<tr>
<td>O(2)-C(11)-C(10)</td>
<td>125.2(3)</td>
</tr>
<tr>
<td>O(1)-C(11)-C(10)</td>
<td>112.1(2)</td>
</tr>
<tr>
<td>O(1)-C(12)-H(29)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(1)-C(12)-H(3)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(29)-C(12)-H(3)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(1)-C(12)-H(2)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(29)-C(12)-H(2)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(3)-C(12)-H(2)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(3)-C(13)-C(7)</td>
<td>121.1(2)</td>
</tr>
<tr>
<td>O(3)-C(13)-C(14)</td>
<td>121.3(2)</td>
</tr>
<tr>
<td>C(7)-C(13)-C(14)</td>
<td>117.6(2)</td>
</tr>
<tr>
<td>C(15)-C(14)-C(20)</td>
<td>118.5(3)</td>
</tr>
<tr>
<td>C(15)-C(14)-C(13)</td>
<td>122.1(2)</td>
</tr>
<tr>
<td>C(20)-C(14)-C(13)</td>
<td>119.4(2)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(14)</td>
<td>121.0(3)</td>
</tr>
</tbody>
</table>
C(16)-C(15)-H(4) 119.5
C(14)-C(15)-H(4) 119.5
C(15)-C(16)-C(17) 120.8(3)
C(15)-C(16)-H(5) 119.6
C(17)-C(16)-H(5) 119.6
C(19)-C(17)-C(16) 118.3(3)
C(19)-C(17)-C(18) 121.2(3)
C(16)-C(17)-C(18) 120.5(3)
C(17)-C(18)-H(8) 109.5
C(17)-C(18)-H(6) 109.5
H(8)-C(18)-H(6) 109.5
C(17)-C(18)-H(7) 109.5
H(6)-C(18)-H(7) 109.5
C(17)-C(19)-C(20) 121.1(3)
C(17)-C(19)-H(9) 119.4
C(20)-C(19)-H(9) 119.4
C(19)-C(20)-C(14) 120.3(3)
C(19)-C(20)-H(10) 119.9
C(14)-C(20)-H(10) 119.9
N(2)-C(21)-N(1) 115.4(2)
N(2)-C(21)-N(3) 133.9(2)
N(1)-C(21)-N(3) 110.7(2)
C(23)-C(22)-N(3) 130.8(3)
C(23)-C(22)-C(8) 120.3(3)
N(3)-C(22)-C(8) 108.9(2)
C(24)-C(23)-C(22) 118.0(3)
C(24)-C(23)-H(12) 121.0
C(22)-C(23)-H(12) 121.0
C(23)-C(24)-C(10) 121.5(3)
C(23)-C(24)-H(11) 119.3
C(10)-C(24)-H(11) 119.3
N(3)-C(25)-C(26) 112.0(2)
N(3)-C(25)-C(29) 115.3(2)
C(26)-C(25)-C(29) 105.9(2)
N(3)-C(25)-H(13) 107.8
C(26)-C(25)-H(13) 107.8
C(29)-C(25)-H(13) 107.8
C(27)-C(26)-C(25) 104.2(2)
C(27)-C(26)-H(14) 110.9
C(25)-C(26)-H(14) 110.9
C(27)-C(26)-H(15) 110.9
C(25)-C(26)-H(15) 110.9
H(14)-C(26)-H(15) 108.9
C(26)-C(27)-C(28) 102.1(2)
C(26)-C(27)-H(17) 111.3
C(28)-C(27)-H(17) 111.3
C(26)-C(27)-H(16) 111.3
C(28)-C(27)-H(16) 111.3
H(17)-C(27)-H(16) 109.2
C(27)-C(28)-C(29) 103.7(2)
C(27)-C(28)-H(18) 111.0
C(29)-C(28)-H(18) 111.0
C(27)-C(28)-H(19) 111.0
C(29)-C(28)-H(19) 111.0
H(18)-C(28)-H(19) 109.0
C(28)-C(29)-C(25) 105.5(2)
C(28)-C(29)-H(21) 110.6
C(25)-C(29)-H(21) 110.6
C(28)-C(29)-H(20) 110.6
C(25)-C(29)-H(20) 110.6
H(21)-C(29)-H(20) 108.8
C(31)-C(30)-C(2) 121.7(3)
C(31)-C(30)-H(23) 119.1
C(2)-C(30)-H(23) 119.1
C(30)-C(31)-C(5) 120.4(3)
C(30)-C(31)-H(22) 119.8
C(5)-C(31)-H(22) 119.8
C(33)-C(32)-H(54) 109.5
C(33)-C(32)-H(30) 109.5
H(54)-C(32)-H(30) 109.5
C(33)-C(32)-H(53) 109.5
H(54)-C(32)-H(53) 109.5
H(30)-C(32)-H(53) 109.5
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(6)-C(44)-C(45)</td>
<td>120.6(2)</td>
</tr>
<tr>
<td>C(38)-C(44)-C(45)</td>
<td>117.7(3)</td>
</tr>
<tr>
<td>C(46)-C(45)-C(51)</td>
<td>118.8(3)</td>
</tr>
<tr>
<td>C(46)-C(45)-C(44)</td>
<td>122.8(2)</td>
</tr>
<tr>
<td>C(51)-C(45)-C(44)</td>
<td>118.4(3)</td>
</tr>
<tr>
<td>C(47)-C(46)-C(45)</td>
<td>120.5(3)</td>
</tr>
<tr>
<td>C(47)-C(46)-H(39)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(45)-C(46)-H(39)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(46)-C(47)-C(48)</td>
<td>121.1(3)</td>
</tr>
<tr>
<td>C(46)-C(47)-H(38)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(48)-C(47)-H(38)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(50)-C(48)-C(47)</td>
<td>118.3(3)</td>
</tr>
<tr>
<td>C(50)-C(48)-C(49)</td>
<td>122.0(3)</td>
</tr>
<tr>
<td>C(47)-C(48)-C(49)</td>
<td>119.7(3)</td>
</tr>
<tr>
<td>C(48)-C(49)-H(34)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(48)-C(49)-H(35)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(34)-C(49)-H(35)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(48)-C(49)-H(33)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(34)-C(49)-H(33)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(35)-C(49)-H(33)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(48)-C(50)-C(51)</td>
<td>121.2(3)</td>
</tr>
<tr>
<td>C(48)-C(50)-H(37)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(51)-C(50)-H(37)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(50)-C(51)-C(45)</td>
<td>120.0(3)</td>
</tr>
<tr>
<td>C(50)-C(51)-H(36)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(45)-C(51)-H(36)</td>
<td>120.0</td>
</tr>
<tr>
<td>N(5)-C(52)-N(4)</td>
<td>114.5(3)</td>
</tr>
<tr>
<td>N(5)-C(52)-N(6)</td>
<td>136.1(3)</td>
</tr>
<tr>
<td>N(4)-C(52)-N(6)</td>
<td>109.4(3)</td>
</tr>
<tr>
<td>N(6)-C(53)-C(54)</td>
<td>130.4(3)</td>
</tr>
<tr>
<td>N(6)-C(53)-C(39)</td>
<td>109.8(3)</td>
</tr>
<tr>
<td>C(54)-C(53)-C(39)</td>
<td>119.8(3)</td>
</tr>
<tr>
<td>C(55)-C(54)-C(53)</td>
<td>118.4(3)</td>
</tr>
<tr>
<td>C(55)-C(54)-H(40)</td>
<td>120.8</td>
</tr>
<tr>
<td>C(53)-C(54)-H(40)</td>
<td>120.8</td>
</tr>
<tr>
<td>C(54)-C(55)-C(41)</td>
<td>122.0(3)</td>
</tr>
<tr>
<td>C(54)-C(55)-H(41)</td>
<td>119.0</td>
</tr>
</tbody>
</table>
C(41)-C(55)-H(41) 119.0
N(6)-C(56)-C(57) 114.9(3)
N(6)-C(56)-C(60) 112.7(2)
C(57)-C(56)-C(60) 102.0(3)
N(6)-C(56)-H(42) 109.0
C(57)-C(56)-H(42) 109.0
C(60)-C(56)-H(42) 109.0
C(58)-C(57)-C(56) 104.1(3)
C(58)-C(57)-H(50) 110.9
C(56)-C(57)-H(50) 110.9
C(58)-C(57)-H(49) 110.9
C(56)-C(57)-H(49) 110.9
H(50)-C(57)-H(49) 109.0
C(57)-C(58)-C(59) 105.8(3)
C(57)-C(58)-H(48) 110.6
C(59)-C(58)-H(48) 110.6
C(57)-C(58)-H(47) 110.6
C(59)-C(58)-H(47) 110.6
H(48)-C(58)-H(47) 108.7
C(58)-C(59)-C(60) 106.2(3)
C(58)-C(59)-H(46) 110.5
C(60)-C(59)-H(46) 110.5
C(58)-C(59)-H(45) 110.5
C(60)-C(59)-H(45) 110.5
H(46)-C(59)-H(45) 108.7
C(59)-C(60)-C(56) 103.1(2)
C(59)-C(60)-H(44) 111.1
C(56)-C(60)-H(44) 111.1
C(59)-C(60)-H(43) 111.1
C(56)-C(60)-H(43) 111.1
H(44)-C(60)-H(43) 109.1
C(62)-C(61)-C(33) 121.7(3)
C(62)-C(61)-H(52) 119.2
C(33)-C(61)-H(52) 119.2
C(36)-C(62)-C(61) 120.5(3)
C(36)-C(62)-H(51) 119.7
C(61)-C(62)-H(51) 119.7
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(7)-C(63)-H(59)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(7)-C(63)-H(87)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(59)-C(63)-H(87)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(7)-C(63)-H(61)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(59)-C(63)-H(61)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(87)-C(63)-H(61)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(8)-C(64)-O(7)</td>
<td>122.3(3)</td>
</tr>
<tr>
<td>O(8)-C(64)-C(65)</td>
<td>125.4(3)</td>
</tr>
<tr>
<td>O(7)-C(64)-C(65)</td>
<td>112.3(2)</td>
</tr>
<tr>
<td>C(66)-C(65)-C(75)</td>
<td>120.7(3)</td>
</tr>
<tr>
<td>C(66)-C(65)-C(64)</td>
<td>117.8(2)</td>
</tr>
<tr>
<td>C(75)-C(65)-C(64)</td>
<td>121.5(3)</td>
</tr>
<tr>
<td>C(67)-C(66)-C(65)</td>
<td>117.4(2)</td>
</tr>
<tr>
<td>C(67)-C(66)-H(73)</td>
<td>121.3</td>
</tr>
<tr>
<td>C(65)-C(66)-H(73)</td>
<td>121.3</td>
</tr>
<tr>
<td>C(66)-C(67)-N(7)</td>
<td>132.9(2)</td>
</tr>
<tr>
<td>C(66)-C(67)-C(77)</td>
<td>121.8(2)</td>
</tr>
<tr>
<td>N(7)-C(67)-C(77)</td>
<td>105.3(2)</td>
</tr>
<tr>
<td>C(84)-C(68)-N(7)</td>
<td>103.8(2)</td>
</tr>
<tr>
<td>C(84)-C(68)-C(69)</td>
<td>133.6(2)</td>
</tr>
<tr>
<td>N(7)-C(68)-C(69)</td>
<td>122.5(2)</td>
</tr>
<tr>
<td>O(9)-C(69)-C(68)</td>
<td>121.6(2)</td>
</tr>
<tr>
<td>O(9)-C(69)-C(70)</td>
<td>120.8(2)</td>
</tr>
<tr>
<td>C(68)-C(69)-C(70)</td>
<td>117.5(2)</td>
</tr>
<tr>
<td>C(71)-C(70)-C(93)</td>
<td>118.6(2)</td>
</tr>
<tr>
<td>C(71)-C(70)-C(69)</td>
<td>121.9(2)</td>
</tr>
<tr>
<td>C(93)-C(70)-C(69)</td>
<td>119.5(2)</td>
</tr>
<tr>
<td>C(72)-C(71)-C(70)</td>
<td>120.8(3)</td>
</tr>
<tr>
<td>C(72)-C(71)-H(81)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(70)-C(71)-H(81)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(71)-C(72)-C(73)</td>
<td>121.0(3)</td>
</tr>
<tr>
<td>C(71)-C(72)-H(86)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(73)-C(72)-H(86)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(72)-C(73)-C(92)</td>
<td>118.0(3)</td>
</tr>
<tr>
<td>C(72)-C(73)-C(74)</td>
<td>119.9(3)</td>
</tr>
<tr>
<td>C(92)-C(73)-C(74)</td>
<td>122.1(3)</td>
</tr>
<tr>
<td>C(73)-C(74)-H(60)</td>
<td>109.5</td>
</tr>
</tbody>
</table>
C(73)-C(74)-H(84) 109.5
H(60)-C(74)-H(84) 109.5
C(73)-C(74)-H(85) 109.5
H(60)-C(74)-H(85) 109.5
H(84)-C(74)-H(85) 109.5
C(76)-C(75)-C(65) 121.7(3)
C(76)-C(75)-H(62) 119.1
C(65)-C(75)-H(62) 119.1
C(77)-C(76)-C(75) 117.7(3)
C(77)-C(76)-H(63) 121.2
C(75)-C(76)-H(63) 121.2
C(76)-C(77)-N(8) 130.5(3)
C(76)-C(77)-C(67) 120.6(3)
N(8)-C(77)-C(67) 108.9(2)
N(8)-C(78)-C(79) 114.1(2)
N(8)-C(78)-C(82) 114.5(2)
C(79)-C(78)-C(82) 105.2(2)
N(8)-C(78)-H(72) 107.6
C(79)-C(78)-H(72) 107.6
C(82)-C(78)-H(72) 107.6
C(80)-C(79)-C(78) 102.6(2)
C(80)-C(79)-H(70) 111.3
C(78)-C(79)-H(70) 111.3
C(80)-C(79)-H(71) 111.3
C(78)-C(79)-H(71) 111.3
H(70)-C(79)-H(71) 109.2
C(79)-C(80)-C(81) 104.4(2)
C(79)-C(80)-H(69) 110.9
C(81)-C(80)-H(69) 110.9
C(79)-C(80)-H(68) 110.9
C(81)-C(80)-H(68) 110.9
H(69)-C(80)-H(68) 108.9
C(80)-C(81)-C(82) 106.6(2)
C(80)-C(81)-H(67) 110.4
C(82)-C(81)-H(67) 110.4
C(80)-C(81)-H(66) 110.4
C(82)-C(81)-H(66) 110.4
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(67)-C(81)-H(66)</td>
<td>108.6</td>
</tr>
<tr>
<td>C(81)-C(82)-C(78)</td>
<td>104.9(2)</td>
</tr>
<tr>
<td>C(81)-C(82)-H(64)</td>
<td>110.8</td>
</tr>
<tr>
<td>C(78)-C(82)-H(64)</td>
<td>110.8</td>
</tr>
<tr>
<td>C(81)-C(82)-H(65)</td>
<td>110.8</td>
</tr>
<tr>
<td>C(78)-C(82)-H(65)</td>
<td>110.8</td>
</tr>
<tr>
<td>H(64)-C(82)-H(65)</td>
<td>108.8</td>
</tr>
<tr>
<td>N(9)-C(83)-N(7)</td>
<td>115.5(2)</td>
</tr>
<tr>
<td>N(9)-C(83)-N(8)</td>
<td>134.9(2)</td>
</tr>
<tr>
<td>N(7)-C(83)-N(8)</td>
<td>109.7(2)</td>
</tr>
<tr>
<td>N(9)-C(84)-C(68)</td>
<td>112.4(2)</td>
</tr>
<tr>
<td>N(9)-C(84)-C(85)</td>
<td>118.8(2)</td>
</tr>
<tr>
<td>C(68)-C(84)-C(85)</td>
<td>128.7(2)</td>
</tr>
<tr>
<td>C(86)-C(85)-C(90)</td>
<td>118.4(2)</td>
</tr>
<tr>
<td>C(86)-C(85)-C(84)</td>
<td>119.9(2)</td>
</tr>
<tr>
<td>C(90)-C(85)-C(84)</td>
<td>121.7(2)</td>
</tr>
<tr>
<td>C(87)-C(86)-C(85)</td>
<td>120.6(3)</td>
</tr>
<tr>
<td>C(87)-C(86)-H(80)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(85)-C(86)-H(80)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(86)-C(87)-C(88)</td>
<td>121.1(3)</td>
</tr>
<tr>
<td>C(86)-C(87)-H(79)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(88)-C(87)-H(79)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(89)-C(88)-C(87)</td>
<td>117.9(2)</td>
</tr>
<tr>
<td>C(89)-C(88)-C(91)</td>
<td>121.2(3)</td>
</tr>
<tr>
<td>C(87)-C(88)-C(91)</td>
<td>120.9(3)</td>
</tr>
<tr>
<td>C(90)-C(89)-C(88)</td>
<td>121.2(3)</td>
</tr>
<tr>
<td>C(90)-C(89)-H(75)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(88)-C(89)-H(75)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(89)-C(90)-C(85)</td>
<td>120.6(3)</td>
</tr>
<tr>
<td>C(89)-C(90)-H(74)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(85)-C(90)-H(74)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(88)-C(91)-H(77)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(88)-C(91)-H(78)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(77)-C(91)-H(78)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(88)-C(91)-H(76)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(77)-C(91)-H(76)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(78)-C(91)-H(76)</td>
<td>109.5</td>
</tr>
</tbody>
</table>
C(93)-C(92)-C(73) 121.3(3)
C(93)-C(92)-H(82) 119.4
C(73)-C(92)-H(82) 119.4
C(92)-C(93)-C(70) 120.2(3)
C(92)-C(93)-H(83) 119.9
C(70)-C(93)-H(83) 119.9

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å² x 10³) for 140616LT_0M. The anisotropic displacement factor exponent takes the form: -2π² [h²a²U₁¹ + ... + 2hkab*U₁²].

<table>
<thead>
<tr>
<th></th>
<th>U₁¹</th>
<th>U₂²</th>
<th>U₃₃</th>
<th>U₂₃</th>
<th>U₁₃</th>
<th>U₁²</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>27(1)</td>
<td>22(1)</td>
<td>29(1)</td>
<td>9(1)</td>
<td>11(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>56(2)</td>
<td>27(1)</td>
<td>25(1)</td>
<td>-7(1)</td>
<td>17(1)</td>
<td>-11(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>26(1)</td>
<td>18(1)</td>
<td>33(1)</td>
<td>-1(1)</td>
<td>14(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>33(1)</td>
<td>33(1)</td>
<td>38(1)</td>
<td>10(1)</td>
<td>7(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>49(2)</td>
<td>29(1)</td>
<td>49(1)</td>
<td>10(1)</td>
<td>-6(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>25(1)</td>
<td>23(1)</td>
<td>40(1)</td>
<td>-7(1)</td>
<td>14(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>28(1)</td>
<td>21(1)</td>
<td>39(1)</td>
<td>16(1)</td>
<td>13(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>39(1)</td>
<td>20(1)</td>
<td>22(1)</td>
<td>1(1)</td>
<td>10(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>25(1)</td>
<td>16(1)</td>
<td>28(1)</td>
<td>-3(1)</td>
<td>14(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>17(1)</td>
<td>9(1)</td>
<td>19(1)</td>
<td>1(1)</td>
<td>3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>17(1)</td>
<td>14(1)</td>
<td>21(1)</td>
<td>1(1)</td>
<td>4(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>21(1)</td>
<td>10(1)</td>
<td>23(1)</td>
<td>0(1)</td>
<td>7(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>18(1)</td>
<td>20(1)</td>
<td>28(1)</td>
<td>-9(1)</td>
<td>-2(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>18(1)</td>
<td>28(2)</td>
<td>29(1)</td>
<td>-15(1)</td>
<td>-1(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>N(6)</td>
<td>25(1)</td>
<td>20(1)</td>
<td>31(1)</td>
<td>-12(1)</td>
<td>-4(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>N(7)</td>
<td>16(1)</td>
<td>9(1)</td>
<td>15(1)</td>
<td>-1(1)</td>
<td>4(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>N(8)</td>
<td>22(1)</td>
<td>10(1)</td>
<td>22(1)</td>
<td>-3(1)</td>
<td>6(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>N(9)</td>
<td>18(1)</td>
<td>13(1)</td>
<td>19(1)</td>
<td>-2(1)</td>
<td>4(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>32(2)</td>
<td>21(2)</td>
<td>31(2)</td>
<td>8(1)</td>
<td>-2(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>21(2)</td>
<td>18(2)</td>
<td>19(1)</td>
<td>4(1)</td>
<td>-4(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>22(2)</td>
<td>22(2)</td>
<td>25(2)</td>
<td>3(1)</td>
<td>4(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>21(2)</td>
<td>18(2)</td>
<td>23(1)</td>
<td>-2(1)</td>
<td>4(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>16(1)</td>
<td>15(2)</td>
<td>16(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>15(1)</td>
<td>13(1)</td>
<td>21(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>15(1)</td>
<td>11(1)</td>
<td>23(1)</td>
<td>0(1)</td>
<td>1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C(8)</td>
<td>14(1)</td>
<td>11(1)</td>
<td>18(1)</td>
<td>1(1)</td>
<td>1(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>16(1)</td>
<td>12(1)</td>
<td>21(1)</td>
<td>0(1)</td>
<td>-3(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>16(1)</td>
<td>18(2)</td>
<td>17(1)</td>
<td>1(1)</td>
<td>-2(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>21(2)</td>
<td>22(2)</td>
<td>16(1)</td>
<td>2(1)</td>
<td>-3(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>34(2)</td>
<td>34(2)</td>
<td>32(2)</td>
<td>13(1)</td>
<td>15(1)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>16(2)</td>
<td>12(1)</td>
<td>22(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>18(2)</td>
<td>12(1)</td>
<td>18(1)</td>
<td>1(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>17(2)</td>
<td>20(2)</td>
<td>17(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>22(2)</td>
<td>23(2)</td>
<td>24(1)</td>
<td>1(1)</td>
<td>-5(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>31(2)</td>
<td>14(2)</td>
<td>29(2)</td>
<td>1(1)</td>
<td>-12(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>46(2)</td>
<td>19(2)</td>
<td>52(2)</td>
<td>0(2)</td>
<td>-18(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>31(2)</td>
<td>16(2)</td>
<td>33(2)</td>
<td>-6(1)</td>
<td>-7(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>21(2)</td>
<td>22(2)</td>
<td>25(2)</td>
<td>-5(1)</td>
<td>-1(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>14(1)</td>
<td>16(2)</td>
<td>17(1)</td>
<td>-4(1)</td>
<td>3(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>15(1)</td>
<td>12(1)</td>
<td>18(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>20(2)</td>
<td>16(2)</td>
<td>25(1)</td>
<td>1(1)</td>
<td>4(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>18(2)</td>
<td>13(1)</td>
<td>22(1)</td>
<td>2(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>22(2)</td>
<td>17(2)</td>
<td>20(1)</td>
<td>-2(1)</td>
<td>10(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>23(2)</td>
<td>29(2)</td>
<td>34(2)</td>
<td>-8(1)</td>
<td>6(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>29(2)</td>
<td>25(2)</td>
<td>31(2)</td>
<td>0(1)</td>
<td>7(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>29(2)</td>
<td>21(2)</td>
<td>34(2)</td>
<td>-5(1)</td>
<td>11(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(29)</td>
<td>26(2)</td>
<td>21(2)</td>
<td>22(1)</td>
<td>-3(1)</td>
<td>4(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(30)</td>
<td>20(2)</td>
<td>15(2)</td>
<td>22(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>17(1)</td>
<td>19(2)</td>
<td>19(1)</td>
<td>1(1)</td>
<td>1(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(32)</td>
<td>25(2)</td>
<td>46(2)</td>
<td>31(2)</td>
<td>2(2)</td>
<td>1(1)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(33)</td>
<td>21(2)</td>
<td>33(2)</td>
<td>21(1)</td>
<td>-7(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(34)</td>
<td>19(2)</td>
<td>35(2)</td>
<td>15(1)</td>
<td>-4(1)</td>
<td>0(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(35)</td>
<td>14(2)</td>
<td>36(2)</td>
<td>17(1)</td>
<td>-7(1)</td>
<td>2(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(36)</td>
<td>17(2)</td>
<td>33(2)</td>
<td>15(1)</td>
<td>-13(1)</td>
<td>1(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(37)</td>
<td>14(1)</td>
<td>25(2)</td>
<td>30(2)</td>
<td>-13(1)</td>
<td>-2(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(38)</td>
<td>15(1)</td>
<td>18(2)</td>
<td>28(2)</td>
<td>-6(1)</td>
<td>-2(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(39)</td>
<td>18(2)</td>
<td>15(2)</td>
<td>34(2)</td>
<td>-4(1)</td>
<td>-14(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(40)</td>
<td>20(2)</td>
<td>22(2)</td>
<td>27(2)</td>
<td>-4(1)</td>
<td>-6(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(41)</td>
<td>21(2)</td>
<td>25(2)</td>
<td>36(2)</td>
<td>-1(1)</td>
<td>-16(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(42)</td>
<td>22(2)</td>
<td>38(2)</td>
<td>34(2)</td>
<td>-1(2)</td>
<td>-7(1)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(43)</td>
<td>51(2)</td>
<td>66(3)</td>
<td>36(2)</td>
<td>10(2)</td>
<td>23(2)</td>
<td>-6(2)</td>
</tr>
</tbody>
</table>

S-236
<p>| C(44) | 17(2) | 20(2) | 26(2) | -6(1) | -1(1) | 4(1) |
| C(45) | 21(2) | 15(2) | 15(1) | -3(1) | 0(1) | 4(1) |
| C(46) | 17(2) | 21(2) | 17(1) | -2(1) | -2(1) | 5(1) |
| C(47) | 20(2) | 19(2) | 17(1) | -1(1) | 0(1) | 0(1) |
| C(48) | 29(2) | 20(2) | 23(1) | -5(1) | -1(1) | 2(1) |
| C(49) | 50(2) | 20(2) | 54(2) | -6(2) | 7(2) | -2(2) |
| C(50) | 29(2) | 20(2) | 28(2) | -9(1) | 3(1) | 10(1) |
| C(51) | 20(2) | 24(2) | 20(1) | -6(1) | 2(1) | 4(1) |
| C(52) | 20(2) | 26(2) | 28(2) | -7(1) | -1(1) | 8(1) |
| C(53) | 24(2) | 25(2) | 26(2) | -3(1) | -6(1) | 5(1) |
| C(54) | 28(2) | 18(2) | 40(2) | -5(1) | -9(1) | 7(1) |
| C(55) | 32(2) | 23(2) | 31(2) | 5(1) | -9(1) | 2(1) |
| C(56) | 32(2) | 28(2) | 32(2) | -10(1)| 5(1) | 5(1) |
| C(57) | 65(3) | 39(2) | 48(2) | 0(2) | 18(2) | 21(2) |
| C(58) | 54(2) | 52(3) | 46(2) | -5(2) | 20(2) | 4(2) |
| C(59) | 64(3) | 47(2) | 44(2) | -2(2) | 16(2) | 28(2) |
| C(60) | 43(2) | 39(2) | 41(2) | 1(2) | 10(2) | 14(2) |
| C(61) | 20(2) | 45(2) | 25(2) | -15(1)| 10(1) | -6(2) |
| C(62) | 22(2) | 31(2) | 32(2) | -15(1)| 7(1) | 1(1) |
| C(63) | 40(2) | 35(2) | 46(2) | 21(2) | 22(2) | 5(2) |
| C(64) | 22(2) | 18(2) | 19(1) | 4(1) | -5(1) | -1(1) |
| C(65) | 17(2) | 17(2) | 17(1) | 2(1) | -4(1) | 0(1) |
| C(66) | 14(1) | 12(1) | 18(1) | 1(1) | -2(1) | -2(1) |
| C(67) | 15(1) | 10(1) | 16(1) | 0(1) | 0(1) | -1(1) |
| C(68) | 14(1) | 10(1) | 16(1) | -1(1) | 1(1) | -1(1) |
| C(69) | 15(1) | 11(1) | 16(1) | -1(1) | 0(1) | 3(1) |
| C(70) | 16(1) | 13(1) | 12(1) | -1(1) | 0(1) | 1(1) |
| C(71) | 22(2) | 16(2) | 14(1) | -1(1) | -1(1) | 2(1) |
| C(72) | 16(1) | 19(2) | 18(1) | 0(1) | 0(1) | -1(1) |
| C(73) | 26(2) | 14(2) | 19(1) | -2(1) | -2(1) | -3(1) |
| C(74) | 32(2) | 17(2) | 40(2) | -6(1) | 0(1) | -6(1) |
| C(75) | 22(2) | 12(2) | 24(1) | 3(1) | -2(1) | 1(1) |
| C(76) | 22(2) | 14(2) | 25(1) | -2(1) | 2(1) | 4(1) |
| C(77) | 14(1) | 12(1) | 20(1) | -1(1) | 0(1) | 0(1) |
| C(78) | 26(2) | 17(2) | 25(2) | -4(1) | 11(1) | 2(1) |
| C(79) | 26(2) | 42(2) | 38(2) | -18(2)| 2(1) | 7(2) |
| C(80) | 28(2) | 30(2) | 31(2) | -5(1) | 5(1) | 8(1) |</p>
<table>
<thead>
<tr>
<th>C(81)</th>
<th>31(2)</th>
<th>26(2)</th>
<th>58(2)</th>
<th>-13(2)</th>
<th>11(2)</th>
<th>2(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(82)</td>
<td>24(2)</td>
<td>19(2)</td>
<td>20(1)</td>
<td>-1(1)</td>
<td>5(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(83)</td>
<td>15(1)</td>
<td>14(2)</td>
<td>18(1)</td>
<td>-3(1)</td>
<td>1(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(84)</td>
<td>13(1)</td>
<td>10(1)</td>
<td>19(1)</td>
<td>-3(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(85)</td>
<td>13(1)</td>
<td>16(2)</td>
<td>14(1)</td>
<td>-3(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(86)</td>
<td>19(2)</td>
<td>18(2)</td>
<td>21(1)</td>
<td>-3(1)</td>
<td>6(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(87)</td>
<td>19(2)</td>
<td>21(2)</td>
<td>22(1)</td>
<td>0(1)</td>
<td>10(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(88)</td>
<td>23(2)</td>
<td>15(2)</td>
<td>14(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(89)</td>
<td>18(2)</td>
<td>18(2)</td>
<td>18(1)</td>
<td>1(1)</td>
<td>1(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(90)</td>
<td>16(1)</td>
<td>20(2)</td>
<td>15(1)</td>
<td>1(1)</td>
<td>3(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(91)</td>
<td>27(2)</td>
<td>22(2)</td>
<td>25(2)</td>
<td>3(1)</td>
<td>4(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>C(92)</td>
<td>22(2)</td>
<td>15(2)</td>
<td>29(2)</td>
<td>-8(1)</td>
<td>2(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(93)</td>
<td>14(1)</td>
<td>17(2)</td>
<td>24(1)</td>
<td>-4(1)</td>
<td>2(1)</td>
<td>2(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 140616LT_0M.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(24)</td>
<td>7929</td>
<td>8215</td>
<td>-256</td>
<td>43</td>
</tr>
<tr>
<td>H(1)</td>
<td>8788</td>
<td>8044</td>
<td>-588</td>
<td>43</td>
</tr>
<tr>
<td>H(25)</td>
<td>8866</td>
<td>8259</td>
<td>286</td>
<td>43</td>
</tr>
<tr>
<td>H(26)</td>
<td>9501</td>
<td>7294</td>
<td>-108</td>
<td>28</td>
</tr>
<tr>
<td>H(27)</td>
<td>9368</td>
<td>6545</td>
<td>423</td>
<td>25</td>
</tr>
<tr>
<td>H(28)</td>
<td>7040</td>
<td>5301</td>
<td>3165</td>
<td>20</td>
</tr>
<tr>
<td>H(29)</td>
<td>6295</td>
<td>3946</td>
<td>4914</td>
<td>49</td>
</tr>
<tr>
<td>H(3)</td>
<td>5829</td>
<td>3548</td>
<td>4327</td>
<td>49</td>
</tr>
<tr>
<td>H(2)</td>
<td>5449</td>
<td>4077</td>
<td>4288</td>
<td>49</td>
</tr>
<tr>
<td>H(4)</td>
<td>9097</td>
<td>6693</td>
<td>2424</td>
<td>22</td>
</tr>
<tr>
<td>H(5)</td>
<td>9610</td>
<td>7461</td>
<td>2646</td>
<td>29</td>
</tr>
<tr>
<td>H(8)</td>
<td>8377</td>
<td>8442</td>
<td>3261</td>
<td>63</td>
</tr>
<tr>
<td>H(6)</td>
<td>9071</td>
<td>8355</td>
<td>2673</td>
<td>63</td>
</tr>
<tr>
<td>H(7)</td>
<td>9325</td>
<td>8234</td>
<td>3595</td>
<td>63</td>
</tr>
<tr>
<td>H(9)</td>
<td>7313</td>
<td>7847</td>
<td>3301</td>
<td>34</td>
</tr>
<tr>
<td>H(10)</td>
<td>6787</td>
<td>7078</td>
<td>3062</td>
<td>28</td>
</tr>
<tr>
<td>H(12)</td>
<td>8201</td>
<td>4053</td>
<td>1783</td>
<td>24</td>
</tr>
<tr>
<td>H(11)</td>
<td>7468</td>
<td>3891</td>
<td>2844</td>
<td>21</td>
</tr>
<tr>
<td>H(13)</td>
<td>8864</td>
<td>4977</td>
<td>168</td>
<td>23</td>
</tr>
<tr>
<td>H(14)</td>
<td>10171</td>
<td>4882</td>
<td>921</td>
<td>34</td>
</tr>
<tr>
<td>H(15)</td>
<td>9800</td>
<td>4527</td>
<td>1530</td>
<td>34</td>
</tr>
<tr>
<td>H(17)</td>
<td>10484</td>
<td>4008</td>
<td>768</td>
<td>34</td>
</tr>
<tr>
<td>H(16)</td>
<td>10131</td>
<td>4294</td>
<td>-37</td>
<td>34</td>
</tr>
<tr>
<td>H(18)</td>
<td>9088</td>
<td>3726</td>
<td>873</td>
<td>33</td>
</tr>
<tr>
<td>H(19)</td>
<td>9110</td>
<td>3680</td>
<td>-63</td>
<td>33</td>
</tr>
<tr>
<td>H(21)</td>
<td>7904</td>
<td>4192</td>
<td>457</td>
<td>28</td>
</tr>
<tr>
<td>H(20)</td>
<td>8243</td>
<td>4327</td>
<td>-358</td>
<td>28</td>
</tr>
<tr>
<td>H(23)</td>
<td>7248</td>
<td>7690</td>
<td>605</td>
<td>24</td>
</tr>
<tr>
<td>H(22)</td>
<td>7095</td>
<td>6937</td>
<td>1113</td>
<td>22</td>
</tr>
<tr>
<td>H(54)</td>
<td>4351</td>
<td>1933</td>
<td>3057</td>
<td>51</td>
</tr>
<tr>
<td>H(30)</td>
<td>4485</td>
<td>2166</td>
<td>3920</td>
<td>51</td>
</tr>
</tbody>
</table>

S-239
<table>
<thead>
<tr>
<th>H</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>5308</td>
<td>1961</td>
<td>3567</td>
<td>51</td>
</tr>
<tr>
<td>55</td>
<td>6069</td>
<td>2465</td>
<td>2771</td>
<td>28</td>
</tr>
<tr>
<td>56</td>
<td>6283</td>
<td>3197</td>
<td>2220</td>
<td>27</td>
</tr>
<tr>
<td>57</td>
<td>6454</td>
<td>4692</td>
<td>-111</td>
<td>29</td>
</tr>
<tr>
<td>58</td>
<td>7343</td>
<td>5330</td>
<td>-2152</td>
<td>74</td>
</tr>
<tr>
<td>31</td>
<td>7989</td>
<td>4901</td>
<td>-1853</td>
<td>74</td>
</tr>
<tr>
<td>32</td>
<td>8230</td>
<td>5430</td>
<td>-1558</td>
<td>74</td>
</tr>
<tr>
<td>39</td>
<td>4236</td>
<td>3380</td>
<td>844</td>
<td>22</td>
</tr>
<tr>
<td>38</td>
<td>3720</td>
<td>2606</td>
<td>741</td>
<td>23</td>
</tr>
<tr>
<td>34</td>
<td>4157</td>
<td>1733</td>
<td>-50</td>
<td>62</td>
</tr>
<tr>
<td>35</td>
<td>4118</td>
<td>1753</td>
<td>879</td>
<td>62</td>
</tr>
<tr>
<td>33</td>
<td>4986</td>
<td>1572</td>
<td>573</td>
<td>62</td>
</tr>
<tr>
<td>37</td>
<td>6049</td>
<td>2151</td>
<td>251</td>
<td>31</td>
</tr>
<tr>
<td>36</td>
<td>6561</td>
<td>2930</td>
<td>304</td>
<td>26</td>
</tr>
<tr>
<td>40</td>
<td>5627</td>
<td>6055</td>
<td>1216</td>
<td>36</td>
</tr>
<tr>
<td>41</td>
<td>6333</td>
<td>6130</td>
<td>127</td>
<td>36</td>
</tr>
<tr>
<td>42</td>
<td>5379</td>
<td>5754</td>
<td>2582</td>
<td>37</td>
</tr>
<tr>
<td>50</td>
<td>4249</td>
<td>5006</td>
<td>2946</td>
<td>59</td>
</tr>
<tr>
<td>49</td>
<td>5124</td>
<td>5191</td>
<td>3499</td>
<td>59</td>
</tr>
<tr>
<td>48</td>
<td>4480</td>
<td>5862</td>
<td>3830</td>
<td>59</td>
</tr>
<tr>
<td>47</td>
<td>3626</td>
<td>5529</td>
<td>3684</td>
<td>59</td>
</tr>
<tr>
<td>46</td>
<td>3893</td>
<td>6311</td>
<td>2818</td>
<td>61</td>
</tr>
<tr>
<td>45</td>
<td>3071</td>
<td>5957</td>
<td>2635</td>
<td>61</td>
</tr>
<tr>
<td>44</td>
<td>4228</td>
<td>6036</td>
<td>1663</td>
<td>49</td>
</tr>
<tr>
<td>43</td>
<td>3667</td>
<td>5557</td>
<td>1704</td>
<td>49</td>
</tr>
<tr>
<td>52</td>
<td>3743</td>
<td>2912</td>
<td>3284</td>
<td>35</td>
</tr>
<tr>
<td>51</td>
<td>3926</td>
<td>3635</td>
<td>2676</td>
<td>34</td>
</tr>
<tr>
<td>59</td>
<td>11268</td>
<td>5929</td>
<td>2310</td>
<td>58</td>
</tr>
<tr>
<td>87</td>
<td>10663</td>
<td>6372</td>
<td>1998</td>
<td>58</td>
</tr>
<tr>
<td>61</td>
<td>10477</td>
<td>5861</td>
<td>1596</td>
<td>58</td>
</tr>
<tr>
<td>73</td>
<td>9719</td>
<td>4660</td>
<td>3519</td>
<td>18</td>
</tr>
<tr>
<td>81</td>
<td>7546</td>
<td>3338</td>
<td>4312</td>
<td>21</td>
</tr>
<tr>
<td>86</td>
<td>6970</td>
<td>2580</td>
<td>4107</td>
<td>21</td>
</tr>
<tr>
<td>60</td>
<td>7383</td>
<td>1697</td>
<td>4158</td>
<td>45</td>
</tr>
<tr>
<td>84</td>
<td>8142</td>
<td>1547</td>
<td>3670</td>
<td>45</td>
</tr>
<tr>
<td>85</td>
<td>7248</td>
<td>1767</td>
<td>3218</td>
<td>45</td>
</tr>
<tr>
<td>62</td>
<td>9276</td>
<td>6079</td>
<td>3684</td>
<td>24</td>
</tr>
</tbody>
</table>

S-240
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H(63)</td>
<td>8515</td>
<td>5958</td>
<td>4746</td>
<td>25</td>
</tr>
<tr>
<td>H(72)</td>
<td>7655</td>
<td>5083</td>
<td>6332</td>
<td>26</td>
</tr>
<tr>
<td>H(70)</td>
<td>7048</td>
<td>5697</td>
<td>5022</td>
<td>43</td>
</tr>
<tr>
<td>H(71)</td>
<td>6504</td>
<td>5282</td>
<td>5379</td>
<td>43</td>
</tr>
<tr>
<td>H(69)</td>
<td>6434</td>
<td>5703</td>
<td>6518</td>
<td>36</td>
</tr>
<tr>
<td>H(68)</td>
<td>6299</td>
<td>6115</td>
<td>5858</td>
<td>36</td>
</tr>
<tr>
<td>H(67)</td>
<td>7566</td>
<td>6171</td>
<td>7046</td>
<td>45</td>
</tr>
<tr>
<td>H(66)</td>
<td>7678</td>
<td>6393</td>
<td>6201</td>
<td>45</td>
</tr>
<tr>
<td>H(64)</td>
<td>8578</td>
<td>5625</td>
<td>6931</td>
<td>25</td>
</tr>
<tr>
<td>H(65)</td>
<td>8735</td>
<td>5869</td>
<td>6113</td>
<td>25</td>
</tr>
<tr>
<td>H(80)</td>
<td>7297</td>
<td>3517</td>
<td>6307</td>
<td>23</td>
</tr>
<tr>
<td>H(79)</td>
<td>7141</td>
<td>2777</td>
<td>6864</td>
<td>24</td>
</tr>
<tr>
<td>H(75)</td>
<td>9360</td>
<td>2335</td>
<td>6128</td>
<td>22</td>
</tr>
<tr>
<td>H(74)</td>
<td>9549</td>
<td>3083</td>
<td>5618</td>
<td>20</td>
</tr>
<tr>
<td>H(77)</td>
<td>7725</td>
<td>1799</td>
<td>6486</td>
<td>37</td>
</tr>
<tr>
<td>H(78)</td>
<td>7837</td>
<td>2019</td>
<td>7359</td>
<td>37</td>
</tr>
<tr>
<td>H(76)</td>
<td>8675</td>
<td>1832</td>
<td>7009</td>
<td>37</td>
</tr>
<tr>
<td>H(82)</td>
<td>9261</td>
<td>2121</td>
<td>3536</td>
<td>27</td>
</tr>
<tr>
<td>H(83)</td>
<td>9830</td>
<td>2883</td>
<td>3707</td>
<td>22</td>
</tr>
</tbody>
</table>