Synthesis of meta-substituted [18F]3-fluoro-4-aminopyridine via direct radiofluorination of pyridine N-oxides

P. Brugarolas, R. Freifelder, S.-H. Cheng, and O. DeJesus

*Department of Neurology, The University of Chicago, bDepartment of Radiology, The University of Chicago, cDepartment of Medical Physics, The University of Wisconsin at Madison

* corresponding author: brugarolas@uchicago.edu

SUPPLEMENTAL METHODS

Complete experimental procedures

SUPPLEMENTAL DATA

Reference NMR data of the used compounds

SUPPLEMENTAL FIGURES

Sup. Fig. 1. Fluorination of 3-bromo-4-nitropyridine: A. UV HPLC trace. B. 1H, 13C, 19F NMR.

Sup. Fig. 2. Fluorination of 3-iodo-4-nitropyridine: A. UV HPLC trace. B. 1H, 13C, 19F NMR.

Sup. Fig. 3. Fluorination of 3-bromo-4-nitropyridine N-oxide: A. UV HPLC trace. B. 1H, 13C, 19F NMR.

Sup. Fig. 4. Fluorination of 3-bromopyridine: A. UV HPLC trace. B. 1H, 13C, 19F NMR.

Sup. Fig. 5. Fluorination of 3-bromopyridine N-oxide: A. UV HPLC trace. B. 1H, 19F, 13C NMR.

Sup. Fig. 6. Hydrogenation of 3-fluoro-4-nitropyridine N-oxide. UV HPLC before and after.

Sup. Fig. 7. Radioactive and UV HPLC trace of radiofluorination of 3-bromo-4-nitropyridine N-oxide (not spiked with reference standard)
SUPPLEMENTAL METHODS

All radioactivity procedures were approved by the Office of Radiation Safety at the University of Chicago. All chemicals were ordered from Sigma unless otherwise noted.

HPLC conditions (A-F):

A. Nucleodur 5 µm, 4.6 x 250 mm C18ec (Macherey-Nagel). Flow 1.4 mL/min. Solvent A: 50 mM NH₄HCO₃, pH 8.0. Solvent B: 100% MeOH. Method: 0-2 min: 5% B, 2-6 min: 5-50% B, 6-12 min: 50% B, 12-12.5 min: 50-5% B, 12.5-17 min: 5% B.

B. Nucleodur 5 µm, 4.6 x 250 mm C18ec (Macherey-Nagel). Flow 1.4 mL/min. Solvent A: 50 mM NH₄HCO₃, pH 8.0. Solvent B: 100% MeOH. Method: 0-2 min: 1% B, 2-9 min: 1-20% B, 9-11 min: 20% B, 11-11.5 min: 20-1% B, 11.5-14 min: 5% B.

C. Eclipse XDB 5 µm, 9.4 x 250 mm C18 column (Agilent). Flow 4 mL/min. Mobile phase: 50 mM NaH₄PO₄, 10 mM triethylamine, pH 8.0, 5% EtOH. Isocratic: 0-20 min.

D. Eclipse XDB 5 µm, 9.4 x 250 mm C18 column (Agilent). Flow: 4 mL/min. Solvent A: 50 mM NH₄HCO₃, pH 8.0. Solvent B: 100% MeOH. Method: 0-14 min: 5% B, 14-17 min: 5-25% B, 17-19 min: 25% B, 19-20 min: 25-5% B, 20-25 min: 5% B.

E. Eclipse XDB 5 µm, 9.4 x 250 mm C18 column (Agilent). Flow 4 mL/min. Mobile phase: 50 mM NaH₄PO₄, 10 mM triethylamine, pH 8.0, 5% EtOH. Isocratic: 0-10 min.

F. Acclaim 5 µm, 4.6 x 150 mm C18 column (Thermo Scientific). Flow 0.6 mL/min. Mobile phase: H₂O 0.1% TFA, 5% MeOH. Isocratic: 0-6 min.

RadioTLC analysis: The radioactive sample was spotted on a 25 * 75 mm TLC plate (PE SIL G, Whatman) next to the non-radioactive standard (1 mg/mL). The TLC was run in 95:5 methanol:acetic acid. The reference standard was visualized using a handheld UV-lamp and the radioactive stop measured with radio-TLC scanner (Eckert & Ziegler).
Non-radioactive fluorination of 3-bromo-4-nitropyridine (3): 10 µL of 1 M tetrabutylammonium fluoride (TBAF) solution in THF (10 µmol, 0.5 eq.) was added to a solution of 3-bromo-4-nitropyridine (96%, Aurum Pharmatech, LLC) (20 µmol, 1 eq.) in 500 µL of anhydrous dimethylsulfoxide (DMSO) in a 2 mL HPLC vial. The reaction was analyzed by HPLC (conditions A). Retention times: 3-bromo-4-nitropyridine (3) = 10.83 min, 3-fluoro-4-nitropyridine = 8.38, 3-bromo-4-fluoropyridine (6) = 11.76 min. Retention times for the product matched within 0.05 min the reference standard. Identity of the product was confirmed by HR-MS (m/z M⁺ exp.: 174.9423, calc: 174.9433) and ¹H, ¹³C and ¹⁹F NMR. Product amount was calculated from the area under the curve of the HPLC UV1 trace using a calibration curve.

Non-radioactive fluorination of 3-iodo-4-nitropyridine (4): 10 µL of 1 M TBAF solution in THF (10 µmol, 0.5 eq.) was added to a solution of 3-iodo-4-nitropyridine (96%, Aurum Pharmatech, LLC) (20 µmol, 1 eq.) in 500 µL of anhydrous dimethylsulfoxide (DMSO) in a 2 mL HPLC vial. The reaction was analyzed by HPLC (conditions A). Retention times: 3-iodo-4-aminopyridine (4) = 11.02 min, 3-iodo-4-fluoropyridine (7) = 13.43 min. Starting material absorbs at 254 and 313 nm. Product does not absorb at 313 nm. The product Identity of the product was confirmed by HR-MS (m/z M⁺ exp.: 222.9288, calc: 222.9294) and ¹H, ¹³C and ¹⁹F NMR.

Non-radioactive fluorination of 3-bromopyridine N-oxide (8): 10 µL of 1 M TBAF solution in THF (10 µmol, 0.5 eq.) was added to a solution of a 3-bromopyridine N-oxide (98+, Alfa Aesar) (20 µmol, 1 eq.) in 500 µL of anhydrous DMSO in a 2 mL HPLC vial. The reaction was analyzed by HPLC (conditions B). Retention times: 3-bromo-4-nitropyridine N-oxide (8) = 11.84 min, 3-fluoro-4-nitropyridine N-oxide (9) = 7.93 min. Retention time for the product matched within 0.05 min the reference standard. Identity of the product was confirmed by HR-MS (m/z M⁺ exp.: 158.0141, calc.: 158.0128) and ¹H, ¹³C and ¹⁹F NMR. Product amount was calculated from the area under the curve of the HPLC UV2 trace using a calibration curve.

Reaction of 3-bromopyridine (11) with TBAF: 120 µL of 1 M TBAF solution in THF (120 µmol, 1.2 eq.) was added to a solution of a 3-bromopyridine (97%, Combi-Blocks) (100 µmol, 1 eq.) in
400 µL of anhydrous DMSO in a 2 mL HPLC vial. The reaction was heated to 120°C for 30 min and analyzed by HPLC (conditions F) and ¹H, ¹³C and ¹⁹F NMR. Retention times: 3-bromopyridine (11) = 4.31 min, 3-fluoropyridine (12) = 1.56 min. No product was detected by HPLC or NMR.

Reaction of 3-bromopyridine N-oxide (13) with TBAF: 120 µL of 1 M TBAF solution in THF (120 µmol, 1.2 eq.) was added to a solution of a 3-bromopyridine N-oxide (97%, Alfa-Aesar) (100 µmol, 1 eq.) in 400 µL of anhydrous DMSO in a 2 mL HPLC vial. The reaction was heated to 120°C for 30 min and analyzed by HPLC (conditions F) and ¹H, ¹³C and ¹⁹F NMR. Retention times: 3-bromopyridine N-oxide (13) = 3.46 min, 3-fluoropyridine N-oxide (14) = 1.42 min. Yield was determined based on ¹H-NMR and HPLC.

Catalytic hydrogenation of 3-fluoro-4-nitropyridine N-oxide (9): 0.1 mg of 3-fluoro-4-aminopyridine N-oxide (9) were dissolved in 4 mL of MeOH in a 50 mL round bottom flask containing a stir bar. While stirring, 3-4 mg of 10% Pd/C (dry basis) was added and the flask sealed with a rubber septum. The vial was evacuated and backfilled with hydrogen gas from a balloon and the mixture was allowed to react for 10 min. After 10 min, the suspension was passed through a 0.4 µm PTFE filter and analyzed by HPLC (conditions C). Reference retention times: 3-fluoro-4-aminopyridine N-oxide (9) = 5.80 min, 3-fluoro-4-aminopyridine (10) = 7.05 min. Retention time for the product matched within 0.05 min the reference standard. Identity of the product was confirmed by HR-MS (m/z M⁺ exp.: 112.0416, calc: 112.0437). Product amount was calculated from the area under the curve of the HPLC UV2 trace using a calibration curve.

Procurement of [¹⁸F]fluoride: Cyclotron produced no-carrier-added aqueous [¹⁸F]fluoride was obtained from IBA Molecular North America, Inc.

Production of tetrabutyl ammonium [¹⁸F]fluoride ([¹⁸F]TBAF): Fifty to a hundred mCi (1.85 – 3.7 GBq) of cyclotron produced ¹⁸F were trapped in a Sep-Pak Accell Plus QMA Plus Light Cartridge (Waters Corporation) preconditioned with 5 mL of 50 mM of KHCO₃ followed by 10 mL of water and 20 mL of air. The cartridge was eluted with a solution containing of 300 µL of 50
mM TBA-HCO₃ in water with 5% EtOH (ABX advanced biochemical compounds GmbH) and 600 µL of acetonitrile (MeCN). The water-MeCN solution was dried azeotropically at 85 °C under reduced pressure (20 mbar) for 7.5 min. To ensure complete dryness two additional aliquots of MeCN (500 µL) followed by evaporation (3 min) were performed. After drying, the vial was filled with argon gas and cooled down to room temperature in a water beaker. The [¹⁸F]TBAF residue was dissolved in 100-400 µL of anhydrous DMSO and used for the reactions.

Radiochemical synthesis of [¹⁸F]3-fluoro-4-nitropyridine N-oxide ([¹⁸F]9) from 3-bromo-4-nitropyridine N-oxide (8): 100 µL of 3-bromo-4-nitropyridine N-oxide (8) dissolved in DMSO (20 mg/mL) were added to 100 µL of [¹⁸F]TBAF solution (~10 mCi, ~370 MBq) in 3 mL microreactor vial and allowed to react for 15 min. 100 µL of this solution with or without reference standard (20 µg) were injected into a semiprep C-18 HPLC column equipped with a variable wavelength UV-Vis detector and a radiation detector (conditions C). The radioactive peaks were collected and the radioactivity of each fraction measured using a Capintec dose calibrator. The radiochemical yield was calculated as radioactivity in the peak corrected for decay over radioactivity injected.

Radiochemical synthesis of [¹⁸F]3-fluoro-4-nitropyridine N-oxide ([¹⁸F]9) from 3-fluoro-4-nitropyridine N-oxide (9) by ¹⁹F/¹⁸F exchange: 100 µL of 3-fluoro-4-nitropyridine N-oxide (9) dissolved in DMSO (1 mg/mL) were added to 100 µL of [¹⁸F]TBAF solution (~10 mCi, ~370 MBq) in 3 mL microreactor vial and allowed to react for 1 min. 100 µL of this solution were injected into a semiprep C-18 HPLC column equipped with a variable wavelength UV-Vis detector and a radiation detector (conditions E). The radioactive peaks were collected and the radioactivity of each fraction measured using a Capintec dose calibrator. The radiochemical yield was calculated as radioactivity in the peak corrected for decay over radioactivity injected.

Synthesis of [¹⁸F]3-fluoro-4-aminopyridine ([¹⁸F]10): 1-10 mCi (37-370 MBq) of [¹⁸F]3-fluoro-4-aminopyridine N-oxide ([¹⁸F]9) containing 20-100 µg of cold 3-fluoro-4-aminopyridine N-oxide were dissolved in 4 mL of MeOH and the reaction was carried out as described above. The
presence of cold compound facilitated obtaining reproducible yields. The product was purified by semiprep HPLC (conditions D). The final specific activity was 10-100 mCi/µmol (0.37-3.7 GBq/µmol).
SUPPLEMENTAL DATA

Reference NMR data of the used compounds.

3-bromo-4-nitropyridine (3):
1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 8.06 (1H, t, $J = 1.3$ Hz), 8.85 (1H, d, $J = 1.3$ Hz), 9.11 (1H, s). 13C-NMR (d_6-DMSO, 125 MHz) δ: (ppm) 110.1 (s), 118.5 (s), 150.8 (s), 150.9 (s), 154.3 (s).

3-iodo-4-nitropyridine (4):
1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 7.99 (1H, d, $J = 5.2$ Hz), 8.80 (1H, d, $J = 5.2$ Hz), 9.23 (1H, s). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 83.5 (s), 118.2 (s), 150.0 (s), 158.4 (s), 159.8 (s).

3-fluoro-4-nitropyridine (5):
1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 8.13 (1H, t, $J = 6.2$ Hz), 8.75 (1H, d, $J = 5.25$ Hz), 9.03 (1H, d, $J = 2.9$ Hz). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 118.4 (d, $J = 4.8$ Hz), 141.8 (d, $J = 23.1$ Hz), 141.9 (d, $J = 23.1$ Hz), 147.5 (d, $J = 6.7$ Hz), 149.7 (d, $J = 269.5$ Hz). 19F-NMR (d_6-DMSO, 470 MHz) δ (ppm): -135.13 (dd, $J_2 = 8.9$ Hz, $J_1 = 2.5$ Hz).

3-bromo-4-fluoropyridine (6):
1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 7.50 (1H, dd, $J_2 = 9.0$ Hz, $J_1 = 5.5$ Hz), 8.56 (1H, dd, $J_2 = 7.5$ Hz, $J_1 = 5.5$ Hz), 8.81 (1H, d, $J = 9.5$ Hz). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 106.0 (s), 112.9 (d, $J = 16.2$ Hz), 151.1 (d, $J = 6.2$ Hz), 153.5 (s), 165.0 (d, $J = 275.4$ Hz). 19F-NMR (d_6-DMSO, 470 MHz) δ (ppm): -99.1 (dd, $J_2 = 16.9$ Hz, $J_1 = 9.1$ Hz).

3-bromo-4-nitropyridine N-oxide (8):
1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 8.15 (1H, d, $J = 7.1$ Hz), 8.38 (1H, dd, $J_2 = 7.1$ Hz, $J_1 = 2.0$ Hz), 8.85 (1H, d, $J = 1.9$ Hz). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 100? (s), 122.8 (s), 139.2 (s), 142.7 (s), 154.3 (s).
3-fluoro-4-nitropyridine N-oxide (9):

1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 8.24 (1H, dd, $J_2 = 31.6$ Hz, $J_1 = 0.8$ Hz), 8.25 (1H, dd, $J_2 = 35.1$ Hz, $J_1 = 1.8$ Hz), 8.91 (1H, dd, $J_2 = 7.1$ Hz, $J_1 = 1.8$ Hz). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 122.3 (s), 131.4 (s), 131.7 (s), 137.0 (d, $J = 4.3$ Hz), 153.3 (d, $J = 264.8$ Hz). 19F-NMR (d_6-DMSO, 470 MHz) δ (ppm): -126.7 (dd, $J_2 = 8.5$ Hz, $J_1 = 0.8$ Hz).

3-bromopyridine (11):

1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 7.38 (1H, dd, $J_2 = 8.1$ Hz, $J_1 = 3.5$ Hz), 7.85 (1H, d, $J_2 = 8.2$ Hz, $J_1 = 1.0$ Hz), 8.56 (1H, m), 8.69 (1H, d, $J = 2.3$ Hz). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 120.3 (s), 124.9 (s), 138.2 (s), 147.6 (s), 150.1 (s).

3-fluoropyridine (12):

1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 7.40 (1H, m), 7.60 (1H, dt, $J_2 = 7.5$ Hz, $J_1 = 1.5$ Hz), 8.41 (1H, m), 8.50 (1H, d, $J = 3.0$ Hz). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 122.8 (d, $J = 17.7$ Hz), 124.9 (d, $J = 3.9$ Hz), 137.7 (d, $J = 22.5$ Hz), 145.8 (d, $J = 4.1$ Hz), 159.2 (d, $J = 252.8$ Hz). 19F-NMR (d_6-DMSO, 470 MHz) δ (ppm): -126.7 (t, $J = 5.1$ Hz).

3-bromopyridine N-oxide (13):

1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 7.37 (1H, t, $J = 7.8$ Hz), 7.58 (1H, d, $J = 7.6$ Hz), 8.25 (1H, d, $J = 7.1$ Hz), 8.56 (1H, s). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 120.0 (s), 127.0 (s), 128.3 (s), 138.3 (s), 140.0 (s).

3-fluoropyridine N-oxide (14):

1H-NMR (d_6-DMSO, 500 MHz) δ (ppm): 7.40 (1H, dt, $J_2 = 55.4$ Hz, $J_1 = 7.9$ Hz), 7.42 (1H, dd, $J_2 = 54.5$ Hz, $J_1 = 7.2$ Hz), 8.13 (1H, d, $J = 6.4$ Hz), 8.51 (1H, s). 13C-NMR (d_6-DMSO, 125 MHz) δ (ppm): 113.2 (d, $J = 20.4$ Hz), 126.6 (d, $J = 10.0$ Hz), 129.2 (d, $J = 35.5$ Hz), 136.2 (s), 160.2 (d, $J = 247.9$ Hz). 19F-NMR (d_6-DMSO, 470 MHz) δ (ppm): -122.1 (td, $J_2 = 5.3$ Hz, $J_1 = 0.8$ Hz).
Sup. Fig. 1. Fluorination of 3-bromo-4-nitropyridine.

1A. UV HPLC trace

![UV HPLC trace](image)

Elution times:
3-bromo-4-nitropyridine (3): 10.85 min – absorbs at 254 and 313 nm
3-bromo-4-fluoropyridine (6): 11.88 min – absorbs only at 254 nm
1B. NMR

\[\text{1H NMR} \]

\[\text{13C NMR} \]
19F NMR

Chemical shifts: -99.2, -99.0 ppm

Reactants:
- Nitro compound
- Bromine

Reagents:
- TBAF
- DMSO

Conditions:
- 25 °C, 15 min

Products:
- Fluorinated compound

Bruker

Current data parameters:
- ChemStation B.07.10
- FID
- T1: Acquisition parameters
- Time: 10.40
- Delay: 20.40
- Phase: 0.00
- Signal: 512 points
- FT: 1280 points
- T1: 1000 ms
- TR: 1000 ms
-データ変換:
- 1024 points
- 2.3328 MHz
- 90°
- 90°
- 180°
- 2.9200 MHz
- 1.00

Bruker

Current data parameters:
- ChemStation B.07.10
- FID
- T1: Acquisition parameters
- Time: 10.40
- Delay: 20.40
- Phase: 0.00
- Signal: 512 points
- FT: 1280 points
- T1: 1000 ms
- TR: 1000 ms
-データ変換:
- 1024 points
- 2.3328 MHz
- 90°
- 90°
- 180°
- 2.9200 MHz
- 1.00
Sup. Fig. 2. Fluorination of 3-iodo-4-nitropyridine

2A. UV HPLC trace

Elution times:
3-iodo-4-nitropyridine (4): 10.98 min – absorbs at 254 and 313 nm
3-iodo-4-fluoropyridine (7): 13.38 min – absorbs only at 254 nm
2B. NMR

1H NMR

13C NMR
19F NMR

![Chemical structure and NMR spectrum](image)

- Reaction: TBAF in DMSO at 25 °C for 15 min
- Product formation
- NMR spectrum showing peak at -66.6 ppm
Sup. Fig. 3. Fluorination of 3-bromo-4-nitropyridine N-oxide

3A. UV HPLC trace

Elution times:
3-bromo-4-nitropyridine N-oxide (8): 11.83 min – absorbs at 254 and 313 nm
3-fluoro-4-nitropyridine N-oxide (9): 7.95 min – absorbs only at 254 and 313 nm
3B. NMR

1H NMR

13C NMR
19F NMR

![NMR Spectra Diagram]

Supplemental Information
Sup. Fig. 4. Fluorination of 3-bromopyridine:

4A. UV HPLC trace.
4B. NMR

1H NMR

![1H NMR spectrum](image)

- TBAF
- DMSO
- 120 °C, 30 min

13C NMR

![13C NMR spectrum](image)

- TBAF
- DMSO
- 120 °C, 30 min
Supplemental Information

19F NMR

![Chemical reaction diagram]

Directions: The reaction proceeds as follows:

1. **TBAF** is added to the reaction mixture.
2. The mixture is heated to **120 °C** for **30 minutes**.
3. The resulting compound shows an **NMR shift at -127.9 ppm**.

Bruker NMR Spectroscopy Data

- **Acquisition Parameters**
 - **FS**: 256KHz
 - **Time**: 12.44
 - **ppm**: 3.000
 - **FID**
 - **Sample**: 30.000N
 - **M**
 - **Ex**
 - **In**
 - **125.000000**
 - **250.000000**
 - **375.000000**
 - **500.000000**

- **Processing Parameters**
 - **FS**: 256KHz
 - **Time**: 12.44
 - **ppm**: 30.000N
 - **M**
 - **Ex**
 - **In**
 - **CAR**: 37.000000
 - **AC**: 37.000000

NMR Spectrum Image

ppm: -127.9
Sup. Fig. 5. Fluorination of 3-bromopyridine N-oxide:

5A. UV HPLC trace.
5B. NMR

1H NMR

19F NMR
13C NMR (replicate reaction sample)
Sup. Fig. 6. UV HPLC traces hydrogenation of 3-fluoro-4-nitropyridine N-oxide (before and after)

Before:

- **B**efore
- **F**luoro
- **N**itropyridine
- **N**-oxide

After:

- **A**fter
- **N**itropyridine
- **N**-oxide

Conditions:
- 1 atm H$_2$
- 10% Pd/C
- MeOH
- 25 ºC, 15 min
Sup. Fig. 7. Radioactive and UV HPLC trace of radiofluorination of 3-bromo-4-nitropyridine N-oxide (not spiked with reference standard)

Product elutes at 11.6 min and precursor elutes at 17.2 min.

HPLC conditions: Eclipse XDB 5 µm, 9.4 x 250 mm C18 column (Agilent). Flow: 4 mL/min. Solvent A: 50 mM NH$_4$HCO$_3$, pH 8.0. Solvent B: 100% MeOH. Method: 0-13 min: 5% B, 13-14 min: 5-25% B, 14-20 min: 25% B, 20-21 min: 25-5% B, 21-30 min: 5% B.