Construction of a photo-responsive supra-amphiphile based on a tetracationic cyclobis(paraquat-\textit{p}-phenylene) and an azobenzene-containing guest in water †

Li Shao, Bin Hua, Jie Yang and Guocan Yu*

State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China; E-mail: guocanyu@zju.edu.cn

Electronic Supplementary Information (15 pages)

1. Materials and methods
2. 2D COSY NMR and HMBC spectra of $H \rightleftharpoons \text{trans-}M$, cis-$M$ and $H \rightleftharpoons \text{cis-}M$
3. 2D NOESY NMR spectrum of $H \rightleftharpoons \text{cis-}M$
4. Stoichiometry determination for the complexation between H and M
5. ITC investigations of host–guest complexation between H and trans-M (or cis-M)
6. Critical aggregation concentration (CAC) determinations of $H \rightleftharpoons \text{trans-}G$
7. Dynamic light scattering (DLS) results of G and $H \rightleftharpoons \text{cis-}G$
8. Atomic Force Microscope (AFM) image of nanosheets formed by $H \rightleftharpoons \text{trans-}G$
9. Calculation of the transformation rate.
10. The measurement of the best molar ratio between H and G.
11. The NMR and MS spectra for G and M guests.
12. References

Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016
1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Compound CBPQT$^{4+}\cdot4\text{Cl}^-$, H, M and G were synthesized according to literature procedures. Solvents were either employed as purchased or dried according to procedures described in the literature. 1H NMR and 13C NMR spectra were recorded on a Bruker Avance DMX 400 spectrophotometer. The 2D NOESY NMR spectrum was recorded on a Bruker Avance DMX 400 spectrophotometer with TMS as the internal reference. UV-vis spectroscopy was performed on a Shimadzu UV-2550 instrument at room temperature. Dynamic light scattering measurements were performed on a Nano-ZS ZEN3600 instrument.
2. 2D COSY NMR and HMBC spectra of $H\leftrightarrow$trans-M, cis-M and $H\leftrightarrow$cis-M.

Fig. S1 Partial 2D 1H-1H COSY spectrum (400 MHz, D$_2$O, 298 K) of $H\leftrightarrow$trans-M.

Fig. S2 Partial HMBC spectrum (400 MHz, D$_2$O, 298 K) of $H\leftrightarrow$trans-M.
Fig. S3 Partial 2D 1H-1H COSY spectrum (400 MHz, D$_2$O, 298 K) of cis-M.

Fig. S4 Partial HMBC spectrum (400 MHz, D$_2$O, 298 K) of cis-M.
Fig. S5 Partial 2D 1H-1H COSY spectrum (400 MHz, D$_2$O, 298 K) of H\rightarrowcis-M.

3. 2D NOESY NMR spectrum of H\rightarrowcis-M

Fig. S6. Partial NOESY NMR spectrum (500 MHz, D$_2$O, room temperature) of H\rightarrowcis-M (10.0 mM).
4. Stoichiometry determination for the complexation between H and M

Fig. S7 Mole ratio plot for the complexation between H and *trans*-G, indicating a 1:1 binding stoichiometry.
5. ITC investigations of host–guest complexation between H and trans-M (or cis-M)

Fig. S8. Microcalorimetric titration of trans-M (2.00 mM, 10 µL per injection) with H (0.100 mM) in water at 298.15 K.
Fig. S9. Microcalorimetric titration of cis-M (2.00 mM, 10 µL per injection) with H (0.100 mM) in water at 298.15 K.
Table S1. Association constants \((K_a)\), enthalpy changes \((\Delta H^o)\) and entropy changes \((\Delta S^o)\) obtained from ITC experiments for the 1:1 complexes of \(H\) with trans-M and cis-M.³

<table>
<thead>
<tr>
<th></th>
<th>(K_a) (M(^{-1}))</th>
<th>(\Delta H) (J/mol)</th>
<th>(\Delta S) (J/mol/deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-M</td>
<td>((1.07 \pm 0.14)E6)</td>
<td>(-(1.28 \pm 0.17)E4)</td>
<td>73.1</td>
</tr>
<tr>
<td>cis-M</td>
<td>((2.51 \pm 0.25)E5)</td>
<td>(-(1.56 \pm 0.23)E4)</td>
<td>51.3</td>
</tr>
</tbody>
</table>

* Microcalorimetric titration experiments were conducted in water at 298.15 K.

6. Critical aggregation concentration (CAC) determinations of \(H\rightleftharpoons\text{trans-G}\)

![Graph](image)

Fig. S10 The concentration-dependent conductivity of \(H\rightleftharpoons\text{trans-G}\) \((H/\text{trans-G} = 1:4, \text{molar ratio})\). The critical aggregation concentration (CAC) was determined to be \(2.62 \times 10^{-6}\) M (based on the concentration of G).
7. Dynamic light scattering (DLS) results of G and $H \rightarrow \text{cis-} G$

Fig. S11 DLS result of $\text{trans-} G$ (5.00 \times 10$^{-5}$ M). The average diameter of the nanoparticles was determined to be 65 nm.

Fig. S12 DLS result of $H \rightarrow \text{cis-} G$. The average diameter of the nanoparticles was determined to be 161 nm.

8. Atomic Force Microscope (AFM) image of nanosheets formed by $H \rightarrow \text{trans-} G$

Fig. S13 Atomic Force Microscope (AFM) image of nanosheets formed by $H \rightarrow \text{trans-} G$. The thickness was measured to be 3.0 nm.
9. Calculation of the transformation rate.

Fig. S14 1H NMR of *trans-M* after irradiation at 365 nm for 10 min.

The transformation rate (T) was calculated by the integral (I): $T = I_{	ext{cis}}/(I_{	ext{cis}} + I_{	ext{trans}}) = 1/(0.21 + 1) = 83\%$.

Fig. S15 1H NMR of *trans-M* after irradiation at 365 nm for 10 min and further irradiation at 435 nm for 1 h.
The transformation rate \((T) \) was calculated by the integral \((I) \):
\[
T = \frac{I_{\text{trans}}}{I_{\text{cis}} + I_{\text{trans}}} = \frac{1}{0.12 + 1} = 89\%.
\]

10. *The measurement of the best molar ratio between \(H \) and \(G \).*

![Graph showing DLS count rates of \(H \) and \(G \) at different charge ratios. The concentration of \(H \) is fixed at \(1.25 \times 10^{-5} \) M.](Fig.S16)
11. The NMR and MS spectra for G and M guests.

Fig. S17 The 1H NMR spectrum (500 MHz, D$_2$O, room temperature) of M.

Fig. S18 The 13C NMR spectrum (125 MHz, D$_2$O, room temperature) of M.
Fig. S19 Electrospray ionization mass spectrum of M. Assignment of main peaks: m/z 305.4 [M – Na]^{-}.

Fig. S20 The 1H NMR spectrum (400 MHz, DMSO-d_6, room temperature) of G.
Fig. S21 The 13C NMR spectrum (100 MHz, DMSO-d_6, room temperature) of G.

Fig. S22 Electrospray ionization mass spectrum of G. Assignment of main peaks: m/z 417.5 [M – Na]$^-$.

12. **References:**
