Supporting Information

Highly Stereoselective Cyclopropanation of Diazo Weinreb Amides

Catalyzed by Chiral Ru(II)-Amm-Pheox Complexes

Soda Chanthamath,* Hamada S. A. Mandour, Tong Thi Minh Thu, Kazutaka Shibatomi and Seiji Iwasa* Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580, JAPAN

CONTENTS:

1. Synthesis of various diazo Weinreb amides	2
 Synthesis of Ru(II)-Pheox complexes Synthesis of Ru(II)-Amm-Pheox complexes General procedure for asymmetric cyclopropanation of diazo Weinreb amides with olefins Analytical data for asymmetric cyclopropanation reaction products 	
	13
	6. Synthetic transformations of cyclopropyl Weinreb amides
7. NMR Spectral data	22
8. HPLC Spectral data	54

General: All reactions were performed under an atmosphere of argon unless otherwise noted. Dichloromethane (CH₂Cl₂) was purchased from Kanto Chemical Co., Inc.. Acetonitrile was purchased from Wako Pure Chemical Industries, Ltd.. All reactions were monitored by thin layer chromatography (TLC), glass plates pre-coated with silica gel Merck KGaA 60 F_{254} , layer thickness 0.2 mm. All the starting materials are commercially available and were used after purification. The products were visualized by irradiation with UV light or by treatment with a solution of phosphomolybdic acid or by treatment with a solution of *p*-anisaldehyde. Flash column chromatography was performed using silica gel (Merck, Art. No.7734). ¹H NMR (500 MHz, 400 MHz) and ¹³C NMR (500 MHz, 400 MHz) spectra were recorded on JEOL JNM-ECX500, JEOL JNM-ECS400 spectrometer. Chemical shifts are reported as δ values (ppm) relative to CDCl₃ (7.26 ppm). Elemental analyses were measured on a Yanaco CHN CORDER MT-6. Optical rotations were performed with a JASCO P-1030 polarimeter at the sodium D line (1.0 ml sample cell). DART mass (positive mode) analyses were performed on a LC-TOF JMS-T100LP.

1. Synthesis of various diazo Weinreb amides

N-Methoxy-N-methyldiazoacetamide (MMD) (2a)

$$HN \stackrel{O}{\longrightarrow} HCl + O \stackrel{Br}{\longrightarrow} Br \stackrel{K_2CO_3 (5 equiv)}{CH_3CN, RT, 8 h} Br \stackrel{O}{\longrightarrow} O \stackrel{ISNHNH IS (1.5 equiv)}{DBU (3 equiv)} N_2 \stackrel{O}{\longrightarrow} N_$$

According to Fukuyama method,¹ to a solution of *N*,*O*-dimethylhydroxylamine hydrochloride (100.0 mg, 1 mmol) and potassium carbonate (708.3 mg, 5 mmol) in acetonitrile, bromoacetyl bromide (88.8 μ L, 1 mmol) was added drop wise with stirring at room temperature. The reaction mixture was stirred for 8 h. The progress of the reaction was monitored by TLC. After the reaction was completed, the reaction mixture was dried over Na₂SO₄, and concentrated. The residue was dissolved in THF and *N*,*N*-ditosylhydrazine (TsNHNHTs) (520.2 mg, 1.5 mmol) was added then DBU (456 μ L, 3 mmol) was added drop wise at 0 °C. The reaction mixture was stirred under reduced pressure until the reaction was finished. The progress of the reaction was monitored by TLC. After the reaction was finished. The progress of the reaction was monitored by TLC. After the reaction was finished. The progress of the reaction was monitored by TLC. After the reaction was completed within 1 h, the reaction was quenched using saturated soln. of NaHCO₃ then reaction mixture was extracted with water and diethyl ether. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography with a mixture of (*n*-Hexane/EtOAc) (2/1 (v/v)) to give the corresponding diazo Weinreb amide **2a** (49% yield) as yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 3.15 (s, 3H), 3.64 (s, 3H), 5.32 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 33.36, 46.40, 61.56, 168.39 ppm. IR (neat) v 2359, 2341, 2108, 1623 cm⁻¹. HRMS (DART) calcd for C₄H₇N₃O₂ [M+NH₄]⁺: 147.0882 found: 147.0885.

N-Benzyl-N-methoxydiazoacetamide (BMD) (2b)

According to Fukuyama method,¹ in a 50 mL two nick flask a mixture of *N*-benzyl-*O*-methylhydroxylamine (66 mg, 0.48 mmol) and K₂CO₃ (332.5 mg, 2.4 mmol) were dissolved in 15 mL of dry CH₃CN. Then from the side arm of the flask bromoacetyl bromide (41.5 μ L, 0.48 mmol) was added and the reaction mixture was stirred for 3 h at room temperature. The progress of the reaction was monitored by TLC and ¹H NMR. After the reaction was completed, the reaction mixture was concentrated under reduced pressure and extracted with water and methylene chloride. The organic layer was dried

over Na₂SO₄, and concentrated. The residue was dissolved in THF and *N*,*N*-ditosylhydrazine (TsNHNHTs) (245 mg, 0.7 mmol) was added then DBU (215 μ L, 1.44 mmol) was added drop wise at 0 °C. The reaction mixture was stirred until the reaction was finished. The progress of the reaction was monitored by TLC. After the reaction was completed within 1 h, the reaction was quenched using saturated soln. of NaHCO₃ then reaction mixture was extracted with water and diethyl ether. The organic layer was dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography with a mixture of (*n*-Hexane/EtOAc) (9/1 (v/v)) to give the corresponding diazo Weinreb amide **2b** (44% yield) as yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 3.55 (s, 3H), 4.73 (s, 2H), 5.32 (s, 1H), 7.10-7.12 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 46.75, 50.43, 62.58, 127.82, 128.49, 128.64, 136.47, 168.49 ppm. IR (neat) v 2395, 2341, 2108, 1622 cm⁻¹. HRMS (DART) calcd for C₁₀H₁₁N₃O₂ [M+NH₄]⁺: 223.1195 found: 223.1192.

N-Acetoxy-N-methyldiazoacetamide (AMD) (2c)

According to Fukuyama method,¹ to a solution of *O*-acetyl-*N*-methyl hydroxylamine (100 mg, 0.79 mmol) and potassium carbonate (550 mg, 3.94 mmol) in 20 mL of dry acetonitrile then bromoacetyl bromide (47 μ L, 0.79 mmol) was added dropwise at room temperature. The reaction mixture was stirred for 6 h. The reaction was monitored by TLC and ¹H NMR. After the reaction was completed, the reaction mixture was evaporated and extracted with water and dichloromethane. The organic layer was dried over Na₂SO₄, and concentrated. Then the residue was dissolved in THF and ditosylhydrazine (TsNHNHTs) (403 mg, 1.2 mmol) was added. After that DBU (354 μ L, 2.38 mmol) was added drop wise at 0 °C. The reaction mixture was stirred until the reaction was finished. The progress of the reaction was monitored by TLC. After the reaction was completed within 1 h, saturated solution of NaHCO₃ was added to quench the reaction and the mixture was extracted with water and diethyl ether. The organic layer was dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography with a mixture of (*n*-Hexane/EtOAc) (3/1 (v/v)) to give the corresponding diazo Weinreb amide **2c** (46% yield) as yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 2.18 (s, 3H), 3.26 (s, 3H), 4.99 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 18.65, 36.47, 46.99, 167.760, 168.02 ppm. IR (neat) v 2359, 2341, 2113, 1796, 1682, 1643 cm⁻¹. HRMS (DART) calcd for C₅H₇N₃O₃ [M+NH₄]⁺: 175.0831 found: 175.0833.

2. Synthesis of Ru(II)-Pheox complexes

Ru(II)-Pheox (3b)

To a mixture of (S)-(+)-2-phenylglycinol (300.0 mg, 2.18 mmol) and Et₃N (1.2 mL, 8.72 mmol) in CHCl₃ (7 mL), a solution of 3-methoxybenzoyl chloride (339.0 mg, 1.98 mmol) in CHCl₃ (4 mL) was added dropwise with magnetic stirring at 0 °C. After the stirring for 10 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CHCl₃ (12 mL) and treated with SOCl₂ (0.7 mL, 9.94 mmol) at 0 °C. After stirring for 24 h at room temperature, the solvent and excess SOCl₂ were removed under reduced pressure. Sat. NaHCO₃ (aq.) (30 mL) was added to the residue with stirring for 5 min. The organic product was extracted with CH_2Cl_2 (3 × 25 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. By using a sonicator, the solid residue was dissolved in 1,4-dioxane (10 mL) and 2.5 N NaOH (aq.) (316.8 mg, 7.9 mmol) was added slowly at 0 °C, then the reaction mixture was stirred for 4 h at room temperature. The solvent was removed under vacuum, followed by addition of water (25 mL) and CH_2Cl_2 (3 × 25 mL) for extraction. The solvent was evaporated under vacuum to afford (S)-2-(3-methoxyphenyl)-4-phenyl-4,5-dihydrooxazole ligand (87% yield). $[\alpha]_{D}^{28} = -34.6$ (c 1.00, CHCl₃), ¹H NMR (125 MHz, CDCl₃) δ 3.84 (s, 3H), 4.26 (t, J = 16.8 Hz, 1H), 4.78 (t, J = 18.7 Hz, 1H) 5.38 (t, J = 17.9 Hz, 1H), 7.06 (dd, J = 1.91, 10.3 Hz, 1H), 7.25-7.37 (m, 6H), 7.62 (s, 1H), 7.64 (d, J = 7.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 55.54, 70.25, 75.30, 112.87, 118.49, 121.06, 126,88, 127.77, 128.89, 129.57, 142.45, 159.64, 164.79 ppm. IR (neat) 3019, 2963, 1603, 1478 cm⁻¹, HRMS (DART) calcd for $C_{16}H_{15}NO_2 [M+H]^+$: 254.1181 found: 254.1186.

A two necked round bottom flask (100 mL) fitted with a magnetic stirring bar and a reflux condenser was charged with (*S*)-2-(3-methoxyphenyl)-4-phenyl-4,5-dihydrooxazole (300.0 mg, 1.18 mmol), $[RuCl_2(benzene)]_2$ (2.59 mg, 0.59 mmol), and KPF₆ (871.7 mg, 4.7 mmol). The reaction flask was

evacuated and backfilled with argon. Through the side arm CH₃CN (20 mL, degassed) and NaOH (aq.) (47.2 mg, 1.18 mmol) were injected. The suspended reaction mixture was refluxed for 24 h at 80 °C. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with CH₃CN/CH₂Cl₂ (1/10 (v/v)) to give the desired complex **3b** (67% yield) as a green solid. ¹H NMR (500 MHz, CD₃CN) δ 1.99 (s, 3H), 2.11 (s, 3H), 2.13 (s, 3H) 2.40 (s, 3H), 3.76 (s, 3H, CH₃CN), 4.49 (t, *J* = 8.0 Hz, 1H), 5.09 (t, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 10.7 Hz, 1H), 7.09 (d, *J* = 2.7 Hz, 1H), 7.31-7.41 (m, 5H), 7.70 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (125 MHz, CD₃CN) δ 0.88, 3.04, 3.13, 3.38, 54.98, 68.22, 78.05, 110.42, 121.27, 121.51, 122.49, 128.09, 128.13, 134.44, 138.60, 141.47, 155.31, 174.07, 174.89 ppm.

Ru(II)-Pheox (3c)

To a mixture of (*S*)-(+)-2-phenylglycinol (244.0 mg, 1.78 mmo) and Et₃N (0.9 mL, 6.46 mmol) in CHCl₃ (7 mL), a solution of 3-(trifluoromethyl)benzoyl chloride (333.0 mg, 1.6 mmol) in CHCl₃ (4 mL) was added drop wise with magnetic stirring at 0 °C. After the stirring for 10 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CHCl₃ (12.0 mL) and treated with SOCl₂ (0.58 mL, 8 mmol) at 0 °C. After stirring for 24 h at room temperature, the solvent and excess SOCl₂ were removed under reduced pressure. Sat. NaHCO₃ (aq.) (30 mL) was added to the residue with stirring for 5 min. the organic product was extracted with CH₂Cl₂ (3 × 25 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. By using a sonicator, the solid residue was dissolved in 1,4-dioxane (10 mL) and 2.5 N NaOH (aq.) (256.0 mg, 6.4 mmol) was added slowly at 0 °C, then the reaction mixture was stirred for 4 h at room temperature. The solvent was removed under

vacuum, followed by addition of water (25 mL) and CH₂Cl₂ (3 x 25 mL) for extraction. The solvent was evaporated under vacuum to afford (*S*)-4-phenyl-2-(3-(trifluoromethyl)phenyl)-4,5-dihydrooxazole ligand (59% yield). $[\alpha]^{28}{}_{\rm D} = -43.6$ (c 1.00, CHCl₃), ¹H NMR (500 MHz, CDCl₃) δ 4.32 (t, *J* = 16.8 Hz, 1H), 4.83 (t, *J* = 18.7 Hz, 1H), 5.42 (t, *J* = 18.7 Hz, 1H), 7.29-7.39 (m, 5H), 7.56 (t, *J* = 15.8 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 8.24 (d, *J* = 7.6 Hz, 1H), 8.35 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 70.33, 75.23, 125.54, 126.83, 127.92, 128.15, 128.55, 128.96, 129.11, 130.97, 131.23, 131.76, 142.00, 163.58 ppm. IR (neat) 3072, 2981, 1674 cm⁻¹. HRMS (DART) calcd for C₁₅H₁₂N₂O₃ [M+H]⁺: 292.0949 found: 292.0943.

A two necked round bottom flask (100.0 mL) fitted with a magnetic stirring bar and a reflux condenser was charged with the (*S*)-4-phenyl-2-(3-(trifluoromethyl)phenyl)-4,5-dihydrooxazole ligand (200 mg, 0.67 mmol), [RuCl₂(benzene)]₂ (171.7 mg, 0.34 mmol), and KPF₆ (493.1 mg, 2.68 mmol). The reaction flask was evacuated and backfilled with argon. Through the side arm CH₃CN (20 mL, degassed) and NaOH (aq.) (26.8 mg, 0.67 mmol) were injected. The suspended reaction mixture was refluxed for 24 h at 80 °C. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with CH₃CN/CH₂Cl₂ (1/20 (v/v)) to give the desired complex **3c** (43% yield) as a faint green solid. ¹H NMR (500 MHz, CD₃CN) δ 1.93 (s, 3H), 1.99 (s, 3H), 2.11 (s, 3H), 2.42 (s, 3H), 4.53 (t, *J* = 5.4 Hz, 1H), 5.12 (d, *J* = 8.5 Hz, 2H), 7.34-7.42 (m, 6H), 7.65 (d, *J* = 5.5 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CD₃CN) δ 0.86, 2.82, 2.98, 3.32, 68.24, 78.38, 121.72, 121.80, 122.04, 124.10, 124.49, 128.16, 128.30, 135,58, 139.15, 141.03, 174.27, 197.19 ppm. IR (neat) v 2964,2293, 1641, 1473 cm⁻¹.

Ru(II)-Pheox (3d)

To a mixture of (S)-(+)-2-phenylglycinol (244.0 mg, 1.78 mmol) and Et_3N (0.9 mL, 6.4 mmol) in CHCl₃ (7 mL), a solution of 4-nitrobenzoyl chloride (296.0 mg, 1.6 mmol) in CHCl₃ (4 mL) was added drop

wise with magnetic stirring at 0 °C. After the stirring for 10 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CHCl₃ (12 mL) and treated with SOCl₂ (0.58 mL, 8 mmol) at 0 °C. After stirring for 24 h at room temperature, the solvent and excess SOCl₂ were removed under reduced pressure. Sat. NaHCO₃ (aq.) (30 mL) was added to the residue with stirring for 5 min. the organic product was extracted with CH₂Cl₂ (3 × 25 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. By using a sonicator, the solid residue was dissolved in 1,4-dioxane (10 mL) and 2.5 N NaOH (aq.) (256 mg, 6.4 mmol) was added slowly at 0 °C, then the reaction mixture was stirred for 4 h at room temperature. The solvent was removed under vacuum, followed by addition of water (25 mL) and CH₂Cl₂ (3 × 25 mL) for extraction. The solvent was evaporated under vacuum to afford (*S*)-2-(4-nitrophenyl)-4-phenyl-4,5-dihydrooxazole ligand (62% yield). [α]²⁷_D = -72.5 (c 1.00, CHCl₃), ¹H NMR (500 MHz, CDCl₃) δ 4.33 (t, *J* = 15.6 Hz, 1H), 4.85 (t, *J* = 18.7 Hz, 1H) 5.43 (t, *J* = 18.7 Hz, 1H), 7.28-7.38 (m, 5H), 8.19 (d, *J* = 11.0 Hz, 2H), 8.27 (d, *J* = 11.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 70.48, 75.41, 123.67, 126.80, 128.02, 129.00, 129.60, 133.45, 141.66, 149.72, 163.00 ppm. IR (neat) 3065, 2949, 1631, 1481 cm⁻¹, HRMS (DART) calcd for C₁₅H₁₂N₂O₃ [M+H]⁺: 269.0926 found: 269.0923.

A two necked round bottom flask (100 mL) fitted with a magnetic stirring bar and a reflux condenser was charged with (*S*)-2-(4-nitrophenyl)-4-phenyl-4,5-dihydrooxazole ligand (200.0 mg, 0.75 mmol), [RuCl₂(benzene)]₂ (187.6 mg, 0.38 mmol) and KPF₆ (552.0 mg, 3.0 mmol). The reaction flask was evacuated and backfilled with argon. Through the side arm CH₃CN (20 mL, degassed) and NaOH (aq.) (30.0 mg, 0.75 mmol) were injected. The suspended reaction mixture was refluxed for 24 h at 80 °C. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with CH₃CN/CH₂Cl₂ (1/20 (v/v)) to give the desired complex **3d** (86% yield) as a green solid. ¹H NMR (500 MHz, CD₃CN) δ 1.93 (s, 3H), 2.10 (s, 3H), 2.13 (s, 3H) 2.45 (s, 3H), 4.60 (t, *J* = 26.4 Hz, 1H), 5.17 (d, *J* = 23.7 Hz, 2H), 7.33-7.46 (m, 5H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 10.7 Hz, 1H), 8.55 (d, *J* = 2.3 Hz, 1H). ¹³C NMR (125 MHz, CD₃CN) δ 1.10, 3.00, 3.04, 3.43, 68.52, 78.51, 115.70, 121.89, 122.18, 123.21, 125.80, 128.38, 128.48, 131.40, 140.73, 141.60, 147.81, 174.02, 190.57 ppm. IR (neat) v 2972,2289, 1664 cm⁻¹.

3. Synthesis of Ru(II)-Amm-Pheox complexes

(Chloromethyl)phenyl-Pheox (5)

To a mixture of (S)-(+)-2-phenylglycinol (301.0 mg, 2.19 mmol) and Et₃N (0.8 mL, 7.96 mmol) in CHCl₃ (7.0 mL), a solution of 4-(chloromethyl)benzovl chloride (376.0 mg, 1.99 mmol) in CHCl₃ (4.00 mL) was added dropwise with magnetic stirring at 0 °C. After the stirring for 10 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CHCl₃ (12.0 mL) and treated with SOCl₂ (1.2 mL, 9.95 mmol) at 0 °C. After stirring for 24 h at room temperature, the solvent and the excess of SOCl₂ were removed under reduced pressure. Sat. NaHCO₃ (aq.) (30 mL) was added to the residue with stirring for 5 min. the organic product was extracted with CH_2Cl_2 (3 × 25 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. By using a sonicator, the solid residue was dissolved in 1,4-dioxane (10 mL) and 2.5 N NaOH (aq.) (398.0 mg, 9.95 mmol) was added slowly at 0 °C, then the reaction mixture was stirred for 4 h at room temperature. The solvent was removed under vacuum, followed by addition of water (25 mL) and CH_2Cl_2 (3 × 25 mL) for extraction. The solvent was evaporated under vacuum and the crude product was purified by column chromatography on silica gel (EtOAc/n-Hexane) (1/10 (v/v)) to afford (S)-2-(4-(chloromethyl)phenyl)-4-phenyl-4,5dihydrooxazole 5 (86% yield) as a pale yellow solid. $R_f = 0.53$ (*n*-Hexane/EtOAc) (2/1 (v/v)). $[\alpha]^{24}_{D} =$ -20.1 (c 1.00, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 4.25 (t, J = 15.7 Hz, 1H), 4.6 (s, 2H), 4.75 (t, J = 15.7 Hz, 1H), 4.75 (t, J = 15.7 Hz, 1H), 4.75 (t, J = 15.7 Hz, 1H), 4.75 (t, J = 15.718.6 Hz, 1H), 5.36 (t, J = 17.4 Hz, 1H), 7.31-7.40 (m, 5H), 7.46 (d, J = 7.6 Hz, 2H), 8.07 (d, J = 7.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 45.73, 70.28, 75.07, 126.88, 127.72, 127.82, 128.70, 128.93, 129.01, 140.93, 142.40, 164.30. IR (neat) 3078, 2915, 1614, 1492 cm⁻¹. HRMS (DART) calcd for C₁₆H₁₄ClNO [M+H]⁺: 272.0844 found: 272.0847.

Ru(II)-(chloromethyl)phenyl-Pheox

A two necked round bottom flask (100.0 ml) fitted with a magnetic stirring bar and a reflux condenser was charged with a mixture of (*S*)-2-(4-(chloromethyl)phenyl)-4-phenyl-4,5-dihydrooxazole ligand **5** (149 mg, 0.55 mmol), [RuCl₂(benzene)]₂ (137 mg, 0.28 mmol), and KPF₆ (412 mg, 2.24 mmol). The reaction flask was evacuated and backfilled with argon. Through the side arm CH₃CN (20 mL, degassed) and NaOH (aq.) (22 mg, 0.55 mmol) was injected. The suspended reaction mixture was refluxed for 24 h at 80 °C. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with CH₃CN/CH₂Cl₂ (1/20 (v/v)) to give the desired complex Ru(II)-(chloromethyl)phenyl-Pheox (96% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.99 (s, 3H), 2.10 (s, 3H), 2.14 (s, 3H) 2.47 (s, 3H), 4.51 (t, *J* = 15.8 Hz, 1H), 4.70 (s, 2H), 5.12 (t, *J* = 18.6 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 1H), 7.31-7.43 (m, 5H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.87 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 3.12, 4.02, 4.05, 4.39, 47.52, 67.76, 78.11, 120.43, 120.78, 121.37, 121.88, 125.94, 127.97, 128.34, 134.76, 137.87, 138.22, 141.48, 174.67, 186.67 ppm. IR (neat) v 2271, 1621, 1455 cm⁻¹.

Ru(II)-(iodomethyl)phenyl-Pheox (6)

A mixture of Ru(II)-(chloromethyl)phenyl-Pheox complex (590.0 mg, 0.86 mmol), NaI (376.0 mg, 2.59 mmol) were placed in a two necked flask equipped with a magnetic stirring bar and a reflux condenser. The system was evacuated and backfilled with argon. CH₃CN (dry) (15 mL) was injected. The reaction mixture was refluxed for 1 h at 50 °C. During period of reaction time, the white crystalline salt (NaCl) was formed as a side product. The reaction was monitored by ¹H NMR until the conversion was completely finished. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel with CH₃CN/CH₂Cl₂ (1/20 (v/v)) to afford Ru(II)-

(iodomethyl)phenyl-Pheox complex **6** (98% yield) as a dark green color. ¹H NMR (400 MHz, CDCl₃) δ 1.99 (s, 3H), 2.11 (s, 3H), 2.12 (s, 3H), 2.44 (s, 3H), 4.49 (t, J = 5.4 Hz, 1H), 4.59 (s, 2H), 5.08 (dd, J = 6.1 Hz, 2H), 6.97 (d, J = 7.8 Hz, 1H), 7.30-7.41 (m, 6H), 7.87 (d, J = 1.8 Hz, 1H). ¹³C NMR (125 MHz, CD₃CN) δ 1.02, 3.10, 3.51, 7.90, 68.11, 78.13, 121.52, 121.66, 122.71, 125.79, 128.16, 128.40, 134.60, 138.04, 140.28, 141.40, 174.60, 187.62 ppm. IR (neat) v 2359, 2341, 2271, 1619, cm⁻¹.

Ru(II)-Amm-Pheox (7a)

Into a schlenktype flask equipped with a magnetic stirring Ru(II)-(iodomethyl)phenyl-Pheox complex **6** (100.0 mg, 0.13 mmol) was added. The system was evacuated and backfilled with argon. Trimethylamine (44 μ L, 0.65 mmol) and CH₃CN (dry) (5 mL) was injected from the side arm. The reaction mixture was stirred at room temperature for 1 h. The reaction progress was monitored by ¹H NMR and TLC until the reaction was finished. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel with CH₃CN/CH₂Cl₂ (1/5 (v/v)) to afford the desired product **7a** (47% yield). ¹H NMR (400 MHz, CD₃CN) δ 1.93 (s, 3H), 1.97 (s, 3H), 2.10 (s, 3H), 2.43 (s, 3H), 3.01 (s, 9H), 4.39 (s, 2H), 4.53 (t, *J* = 29.4 Hz, 1H), 5.12 (d, *J* = 3.0 Hz, 2H), 7.00 (d, *J* = 9.2 Hz, 1H), 7.31-7.37 (m, 3H), 7.39-7.42 (m, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.85 (d, *J* = 1.5 Hz, 1H). ¹³C NMR (125 MHz, (CD₃)₂CO) δ 2.89, 3.29, 3.41, 3.56, 53.23, 69.07, 71.07, 79.05, 121.89, 122.58, 122.82, 123.97, 125.48, 126.34, 129.08, 129.34, 138.12, 142.18, 143.81, 175.47, 189.93 ppm. IR (neat) v 2 359, 2341, 2273, 1622 cm⁻¹.

Ru(II)-Amm-Pheox (7b)

Into a schlenktype flask equipped with a magnetic stirring Ru(II)-(iodomethyl)phenyl-Pheox complex **6** (100.0 mg, 0.13 mmol) was added. The system was evacuated and backfilled with argon. Triethylamine (90 μ L, 0.65 mmol) and CH₃CN (dry) (5 mL) was injected from the side arm. The reaction mixture was stirred at room temperature for 1 h. The reaction progress was monitored by ¹H NMR and TLC until the reaction was finished. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel with CH₃CN/CH₂Cl₂ (1/5 (v/v)) to afford the desired product **7b** (42% yield). ¹H NMR (400 MHz, CD₃CN) δ 1.37 (t, *J* = 7.2 Hz, 9H), 1.99 (s, 3H), 2.11 (s, 3H), 2.19 (s, 3H), 2.42 (s, 3H), 3.19 (q, *J* = 7.2 Hz, 6H), 4.32 (s, 2H), 4.53 (t, *J* = 13.3 Hz, 1H), 5.12 (d, *J* = 25.2 Hz, 2H), 6.97 (d, *J* = 1.8 Hz, 1H), 7.30-7.44 (m, 5H), 7.53 (d, *J* = 7.3 Hz, 1H), 7.88 (s, 1H). ¹³C NMR (125 MHz, CD₃CN) δ 2.92, 3.33, 7.27, 52.55, 61.18, 67.73, 68.80, 121.55, 121.86, 122.85, 123.64, 123.86, 125.47, 127.35, 128.31, 137.21, 141.07, 142.00, 174.43, 188.85 ppm. IR (neat) v 2359, 2341, 2274, 1622 cm⁻¹.

Ru(II)-Amm-Pheox (7c)

Into a schlenktype flask equipped with a magnetic stirring Ru(II)-(iodomethyl)phenyl-Pheox complex **6** (100.0 mg, 0.129 mmol) was added. The system was evacuated and backfilled with argon. *N*-methylaniline (70 μ L, 0.65 mmol) and CH₃CN (10 mL) was injected from the side arm. The reaction mixture was stirred at room temperature for 1 h. The reaction progress was monitored by ¹H NMR and TLC until the reaction was finished. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel with CH₃CN/CH₂Cl₂ (1/5 (v/v)) to afford the desired product **7c** with (41% yield.) ¹H NMR (400 MHz, CD₃CN) δ 1.93 (s, 3H), 1.98 (s, 3H), 2.11 (s, 3H), 2.26 (s, 3H), 3.04 (s, 3H), 4.45 (s, 1H), 4.58 (s, 2H), 5.07 (d, *J* = 3.0 Hz, 2H), 6.58-6.62 (m, 1H), 6.74-6.77 (m, 3H), 7.13-7.17 (m, 2H), 7.29-7.32 (m, 3H), 7.36-7.39 (m, 3H), 7.69 (s, 1H) ppm. ¹³C NMR (125 MHz, CD₃CN) δ 3.04, 3.06, 38.39, 56.23, 68.03, 78.04, 112.16, 115.96, 119.24, 121.33, 121.62, 122.36, 125.68, 128.08, 128.39, 129.11, 133.37, 136.44, 140.20, 141.55, 149.83, 174.80, 186.94 ppm. IR (neat) v 2962, 2359, 2271, 1619 cm⁻¹.

Ru(II)-Amm-Pheox (7d)

Into a schlenktype flask equipped with a magnetic stirring Ru(II)-(iodomethyl)phenyl-Pheox complex **6** (100.0 mg, 0.13 mmol) was added. The system was evacuated and backfilled with argon. *N*,*N*-diethylaniline (82 μ L, 0.65 mmol) and CH₃CN (dry) (10 mL) was injected from the side arm. The reaction mixture was stirred at room temperature for 24 h. The reaction progress was monitored by ¹H NMR and TLC until the reaction was finished. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel with CH₃CN/CH₂Cl₂ (1/20 (v/v)) to afford the desired product **7d** (54% yield). ¹H NMR (500 MHz, CD₃CN) δ 1.17 (t, *J* = 16.8 Hz, 3H), 1.97 (s, 3H), 2.10 (s, 3H), 2.15 (s, 3H), 2.23 (s, 3H), 3.51 (q, *J* = 7.26, 14.14 Hz, 2H), 4.68 (t, *J* = 7.26 Hz, 1H), 4.55 (s, 2H), 5.06 (t, *J* = 7.64 Hz, 2H), 5.42 (s, 1H), 6.56 (t, *J* = 14.52 Hz, 1H), 6.71 (d, *J* = 8.03 Hz, 2H), 6.77 (d, *J* = 9.0 Hz, 1H), 7.12 (t, *J* = 16.0 Hz, 2H), 7.31-7.33 (m, 3H), 7.37-7.40 (m, 3H), 7.74 (s, 1H). ¹³C NMR (125 MHz, CD₃CN) δ 3.05, 11.67, 45.32, 53.96, 68.03, 78.04, 112.01, 115.55, 119.06, 122.34, 125.67, 128.08, 128.10, 128.39, 129.15, 133.28, 136.25, 140.59, 141.56, 148.62, 174.81, 186.88 ppm. IR (neat) v 2957, 2397, 1654 cm⁻¹.

4. General procedure for asymmetric cyclopropanation of olefins with diazo Weinreb amides

To a solution of Ru(II)-*Amm*-Pheox **7a** (3 mol%) and olefins (5 equiv) in CH₂Cl₂ under argon atmosphere at -30 °C, diazo Weinreb amides **2a–c** solution in CH₂Cl₂ was slowly added using a syringe pump over 10 h. After 10 h the syringe was washed with additional 1 mL of CH₂Cl₂ and the reaction mixture was stirred for additional 1 h. The progress of the reaction was monitored by TLC, ¹H NMR. After the reaction finished, the mixture was concentrated using reduced pressure and the residue was purified by column chromatography on silica gel eluted with (*n*-Hexane/EtOAc) to give the desired cyclopropane product. The *trans/cis* ratio was determined from the crude ¹H NMR spectra and the ee value was determined by chiral HPLC analysis.

5. Analytical Data for Asymmetric Cyclopropanation Reaction Products

N-Methoxy-N-methyl-2-phenylcyclopropanecarboxamide (4a)

According to the typical procedure for asymmetric cyclopropanation reaction between styrene (133.0 μ L, 1.16 mmol) and *N*-methoxy-*N*methyldiazoacetamide (MMD) (30.0 mg, 0.23 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-Hexane/EtOAc (3/1

(v/v)) as an eluent to give the desired product in 80% yield as yellow oil. $[\alpha]^{29}_{D} = -142.6$ (c 2.06, CHCl₃). *trans/cis* = 83/17, 90% *trans* ee. ¹H NMR (400 MHz, CDCl₃) (*trans* isomer) δ 1.26-1.32 (m, 1H), 1.56-1.63 (m, 1H), 2.36 (s br, 1H), 2.46-2.53 (m, 1H), 3.20 (s, 3H), 3.65 (s, 3H), 7.1-7.3 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃) (*trans* isomer) δ 16.57, 21.66, 26.00, 32.70, 61.79, 126.32, 128.01, 128.52, 140.88, 173.16. IR (neat) v 2936, 2359, 2341, 1653 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral AS-H), UV detector 230 nm, eluent: Hex/IPA = 20/1, Flow late = 1.0 mL/min, tR = 9.88 min (minor product), tR = 11.90 min (major product). HRMS (DART) calcd for C₁₂H₁₅NO₂ [M+H]⁺: 206.1181 found: 206.1188.

N-Benzyl-N-methoxy-2-phenylcyclopropanecarboxamide (4b)

According to the typical procedure for asymmetric cyclopropanation reaction between styrene (83.7 μ L, 0.73 mmol) and *N*-benzyl-*N*-methoxydiazoacetamide (BMD) (30.0 mg, 0.146 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-Hexane/EtOAc (2/1 (v/v)) as an eluent to give the desired product in 70%

yield as yellow oil. $[\alpha]^{28}{}_{D} = -147.6$ (c 1.98, CHCl₃). *trans/cis* = 80:20, 80% *trans* ee. ¹H NMR (500 MHz, CDCl₃) (*trans* isomer) δ 1.32-1.36 (m, 1H), 1.68-1.72 (m, 1H), 2.46 (s br, 1H), 2.55-2.59 (m, 1H), 3.63 (s, 3H), 4.79 (d, *J* = 15.26 Hz, 1H), 4.88 (d, *J* = 15.26 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) (*trans* isomer) δ 16.89, 21.95, 26.28, 49.48, 62.84, 126.33, 126.45, 127.76, 128.47, 128.58, 128.69, 136.64, 140.82, 173.37 ppm. IR (neat) v 3030, 2359, 2341, 1653 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral AS-H), UV detector 254 nm, eluent: Hex/IPA = 20/1, Flow late = 0.5 mL/min, tR = 23.17 min (minor product), tR = 24.97 min (major product). HRMS (DART) calcd for C₁₈H₁₉NO₂ [M+H]⁺: 282.1494 found: 282.1491.

N-Acetoxy-*N*-methyl-2-phenylcyclopropanecarboxamide (4c)

According to the typical procedure for asymmetric cyclopropanation reaction between styrene (110.0 μ L, 0.95 mmol) and methyl *N*-acetoxy-*N*-diazomethylacetamide (AMD) (30.0 mg, 0.19 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-Hexane/EtOAc

(2/1 (v/v)) as an eluent to give the desired product in 98% yield as yellow oil. $[\alpha]^{25}{}_{D} = -135.4$ (c 3.83, CHCl₃). *trans/cis* = 98/2, 92% *trans* ee. ¹H NMR (500 MHz, CDCl₃) (*trans* isomer) δ 1.26-1.32 (m, 1H), 1.61-1.66 (m, 1H), 1.87-1.93 (m, 1H), 2.06 (s, 3H), 2.41-2.48 (m, 1H), 3.32 (s, 3H), 7.07 (d, *J*=7.3 Hz, 2H), 7.17-7.24 (m, 1H), 7.26-7.29 (m, 2H). ¹³C NMR (500 MHz, CDCl₃) (*trans* isomer) δ 15.83, 18.35, 22.65, 26.22, 35.90, 126.33, 126.56, 128.58, 140.38, 168.62, 172.54 ppm. IR (neat) v 3029, 2953, 1781, 1791, 1667, 1604 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral IE), UV detector 220 nm, eluent: Hex/IPA = 9/1, Flow late = 1.0 mL/min, tR = 19.07 min (minor product), tR = 21.96 min (major product). HRMS (DART) calcd for C₁₃H₁₅NO₃ [M+H]⁺: 234.1130 found: 234.1134.

N-Acetoxy-*N*-methyl-2-(*p*-tolyl)cyclopropanecarboxamide (4d)

According to the typical procedure for asymmetric cyclopropanation reaction between 4-methylstyrene (126.0 μ L, 0.95 mmol) and *N*-acetoxy-*N*-methyldiazoacetamide (AMD) (30.0 mg, 0.19 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-

Hexane/EtOAc (2/1(v/v)) as an eluent to give the desired product in 96% yield as yellow oil. $[\alpha]^{28}_{D} = -160.3$ (c 2.12, CHCl₃). *trans/cis* = 96/4, 94% *trans* ee. ¹H NMR (400 MHz, CDCl₃) (*trans* isomer) δ 1.24-1.30 (m, 1H), 1.60-1.65 (m, 1H), 1.83-1.88 (m, 1H), 2.02 (s, 3H), 2.27 (s, 3H), 2.40-2.45 (m, 1H), 3.32 (s, 3H), 6.97 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H). ¹³C NMR (*trans* isomer) δ (100 MHz, CDCl₃) 15.76, 18.39, 21.09, 22.45, 26.00, 36.06, 126.30, 129.23, 136.15, 137.31, 168.59, 172.61 ppm. IR (neat) v 2923, 2360, 2341, 1794, 1666 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral OJ-H), UV detector 220 nm, eluent: Hex/IPA = 50/1, Flow late = 1.0 mL/min, tR = 33.49 min (minor product), tR = 43.77 min (major product). HRMS (DART) calcd for C₁₄H₁₇NO₃ [M+H]⁺: 248.1286 found: 248.1287.

N-Acetoxy-N-methyl-2-(m-tolyl)cyclopropanecarboxamide (4e)

According to the typical procedure for asymmetric cyclopropanation reaction between 3-methylstyrene (125.0 μ L, 0.95 mmol) and *N*-acetoxy-*N*-methyldiazoacetamide (AMD) (30.0 mg, 0.19 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-Hexane/EtOAc (2/1 (v/v)) as an eluent to give the desired product in 94% yield as colorless

oil. $[\alpha]^{26}_{D} = -142.4$ (c 2.12, CHCl₃). *trans/cis* = 99/1, 92% *trans* ee. ¹H NMR (400 MHz, CDCl₃) (*trans* isomer) δ 1.27-1.32 (m, 1H), 1.61-1.66 (m, 1H), 1.86-1.90 (m, 1H), 2.05 (s, 3H), 2.30 (s, 3H), 2.40-2.74 (m, 1H), 3.32 (s, 3H), 6.86-6.90 (m, 2H), 6.99 (d, *J* = 7.3 Hz, 1H), 7.14 (t, *J* = 14.9 Hz, 1H) ppm. ¹³C NMR (400 MHz, CDCl₃) (*trans* isomer) δ 15.79, 18.39, 21.47, 22.52, 26.18, 36.09, 123.29, 127.25, 127.31, 128.48, 138.16, 140.33, 168.59, 172.48 ppm. IR (neat) v 2922, 2359, 1793, 1668 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral OJ-H), UV detector 220 nm, eluent: Hex/IPA = 50/1, Flow late = 1.0 mL/min, tR = 27.70 min (minor product), tR = 30.90 min (major product). HRMS (DART) calcd for C₁₄H₁₇NO₃ [M+H]⁺: 248.1286 found: 248.1282.

N-Acetoxy-N-methyl-2-(o-tolyl)cyclopropanecarboxamide (4f)

According to the typical procedure for asymmetric cyclopropanation reaction between 2-methylstyrene (125.3 μ L, 0.95 mmol) and and *N*-acetoxy-*N*-methyldiazoacetamide (30.0 mg, 0.19 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-

Hexane/EtOAc (2/1 (v/v)) as an eluent to give the desired product in 97% yield as yellow oil. $[\alpha]^{27}_{D} = -66.7$ (c 1.73, CHCl₃). *trans/cis* = 99/1, 90% *trans* ee. ¹H NMR (400 MHz, CDCl₃) (*trans* isomer) δ 1.28-1.39 (m, 1H), 1.54-1.63 (m, 1H), 1.78-1.85 (m, 1H), 2.13 (s, 3H), 2.36 (s, 3H), 2.51-2.59 (m, 1H), 3.35 (s, 3H), 6.94-6.96 (m, 1H), 7.09-7.16 (m, 3H) ppm. ¹³C NMR (400 MHz, CDCl₃) (*trans* isomer) δ 15.31, 18.53, 19.64, 20.51, 24.47, 36.52, 125.71, 125.92, 126.77, 130.02, 138.16, 138.29, 168.30, 172.99 ppm. IR (neat) v 2953, 2359, 1793, 1664 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral OJ-H), UV detector 220 nm, eluent: Hex/IPA = 50/1, Flow late = 1.0 mL/min, tR = 21.90 min (minor product), tR = 26.64 min (major product). HRMS (DART) calcd for C₁₄H₁₇NO₃ [M+H]⁺: 248.1286 found: 248.1282.

N-Acetoxy-2-(4-methoxyphenyl)-N-methylcyclopropanecarboxamide (4g)

According to the typical procedure for asymmetric cyclopropanation reaction between 4-methoxy styrene (127.8 μ L, 0.95 mmol) and *N*acetoxy-*N*-methyldiazoacetamide (AMD) (30.0 mg, 0.19 mmol). The resulting mixture was purified by silica gel column

chromatography with *n*-Hexane/EtOAc (2/1 (v/v)) as an eluent to give the desired product in 93% yield as yellow oil. $[\alpha]^{23}_{D} = -122.9$ (c 1.32, CHCl₃). *trans/cis* = 93/7, 96% *trans* ee. ¹H NMR (400 MHz, CDCl₃) (*trans* isomer) δ 1.22-1.25 (m, 1H), 1.57-1.61 (m, 1H), 1.77-1.81 (m, 1H), 2.03 (s, 3H), 2.13 (s, 3H), 2.37-2.44 (m, 1H), 3.30 (s, 3H), 3.74 (s, 3H), 6.76 (d, *J* = 8.2 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) (*trans* isomer) δ 15.53, 18.40, 22.33, 25.72, 36.05, 55.37, 113.97, 127.52, 132.31, 158.31, 168.63, 172.86 ppm. IR (neat) v 2936, 2359, 1793, 1663 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral AS-H), UV detector 220 nm, eluent: Hex/IPA = 20/1, Flow late = 1.0 mL/min, tR = 24.85 min (minor product), tR = 27.60 min (major product). HRMS (DART) calcd for C₁₄H₁₇NO₄ [M+H]⁺: 264.1235 found: 264.1239.

N-Acetoxy-2-(4-chlorophenyl)-N-methylcyclopropanecarboxamide (4h)

According to the typical procedure for asymmetric cyclopropanation reaction between 4-chlorostyrene (141.0 μ L, 0.95 mmol) and *N*-acetoxy-*N*-methyldiazoacetamide (30.0 mg, 0.19 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-

Hexane/EtOAc (2/1 (v/v)) as an eluent to give the desired product in 94% yield as pale yellow oil. $[\alpha]^{25}_{D} = -142.1$ (c 1.76, CHCl₃). *trans/cis* = 99/1, 92% *trans* ee. ¹H NMR (400 MHz, CDCl₃) (*trans* isomer) δ 1.23-1.28 (m, 1H), 1.62-1.67 (m, 1H), 1.74-1.87 (m, 1H), 2.04 (s, 3H), 2.41-2.48 (m, 1H), 3.30 (s, 3H), 6.98 (d, *J* = 8.5 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H) ppm. ¹³C NMR (*trans* isomer) δ (100 MHz, CDCl₃) δ 15.80, 18.40, 22.64, 25.56, 35.90, 127.72, 128.66, 132.21, 138.93, 168.56, 172.22 ppm. IR (neat) v 2928, 2359, 1793, 1667 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral IE), UV detector 220 nm, eluent: Hex/IPA = 9/1, Flow late = 1.0 mL/min, tR = 16.43 min (minor product), tR = 19.83 min (major product). HRMS (DART) calcd for C₁₃H₁₄CINO₃ [M+H]⁺: 268.0749 found: 268.0743.

N-Acetoxy-N,2-dimethyl-2-phenylcyclopropanecarboxamide (4i)

According to the typical procedure for asymmetric cyclopropanation reaction between α -methylstyrene (124.0 μ L, 0.95 mmol) and *N*-acetoxy-*N*-

methyldiazoacetamide (AMD) (30.0 mg, 0.19 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-Hexane/EtOAc (2/1 (v/v)) as an eluent to give the desired product in 96% yield as colorless oil. $[\alpha]^{27}{}_{\rm D}$ = +16.6 (c 1.87, CHCl₃). *trans/cis* = 96:4, 74% *trans* ee. ¹H NMR (500 MHz, CDCl₃) (*trans* isomer) δ 1.43 (s, 3H), 1.44-1.48 (m, 1H), 1.56-1.58 (m, 1H), 1.82-2.00 (m, 4H), 3.34 (s, 3H), 7.16-7.30 (m, 5H) ppm. ¹³C NMR (125 MHz, CDCl₃) (*trans* isomer) δ 18.36, 18.95, 19.29, 28.14, 29.57, 35.71, 126.35, 126.39, 128.57, 145.65, 168.65, 171.07 ppm. IR (neat) v 2956, 2360, 1792, 1670 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral IC3), UV detector 230 nm, eluent: Hex/IPA = 9/1, Flow late = 1.0 mL/min, tR = 17.85 min (major product), tR = 28.29 min (minor product). HRMS (DART) calcd for C₁₄H₁₇NO₃ [M+H]⁺: 248.1286 found: 248.1282.

N-Acetoxy-2-(tert-butoxy)-N-methylcyclopropanecarboxamide (4j)

According to the typical procedure for asymmetric cyclopropanation reaction between 2-methyl-2-(vinyloxy)propane (124.9 μ L, 0.95 mmol) and *N*-acetoxy-*N*-methyldiazoacetamide (AMD) (30 mg, 0.19 mmol). The

resulting mixture was purified by silica gel column chromatography with *n*–Hexane/EtOAc (2/1 (v/v)) as an eluent to give the desired product in 95% yield as yellow oil. $[\alpha]^{24}{}_{\rm D} = -13.6$ (c 1.90, CHCl₃). *trans/cis* = 99/1, 91% *trans* ee. ¹H NMR (500 MHz, CDCl₃) (*trans* isomer) δ 1.09-1.14 (m, 1H), 1.22 (s, 9H), 1.26-1.31 (m, 1H), 1.77-1.80 (m, 1H), 2.20 (s, 3H), 3.30 (s br, 3H), 3.54-3.57 (m, 1H) ppm. ¹³C NMR (400 MHz, CDCl₃) (*trans* isomer) δ 15.54, 18.56, 20.01, 28.01, 35.94, 54.66, 75.62, 168.42, 172.43 ppm. IR (neat) v 2976, 2359, 1796, 1661 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral IE), UV detector 220 nm, eluent: Hex/IPA = 8/2, Flow late = 1.0 mL/min, tR = 13.27 min (major product), tR = 14.19 min (minor product). HRMS (DART) calcd for C₁₁H₁₉NO₄ [M+H]⁺: 230.1392 found: 230.1390.

N-Acetoxy-2-(9H-carbazol-9-yl)-N-methylcyclopropanecarboxamide (4k)

According to the typical procedure for asymmetric cyclopropanation reaction between *N*-vinylcarbazole (183.6 mg, 0.95 mmol) and *N*-acetoxy-*N*-methyldiazoacetamide (AMD) (30.0 mg, 0.19 mmol). The resulting mixture was purified by silica gel column chromatography with n-Hexane/EtOAc (2/1 (v/v)) as an eluent to give the desired product in

99% yield as colorless oil. $[\alpha]^{25}{}_{D}$ = +53.3 (c 3.04, CHCl₃). *trans/cis* = 99/1, 96% *trans* ee. ¹H NMR (400 MHz, CDCl₃) (*trans* isomer) δ 1.68-1.82 (m, 1H), 2.00-2.04 (m, 1H), 2.15 (s, 3H), 2.25-2.42 (m, 1H), 3.48 (s, 3H), 3.85-3.88 (m, 1H) 7.26 (t, *J* = 14.95, 2H), 7.47-7.56 (m, 4H), 8.06 (d, *J* = 7.63, 2H) ppm. ¹³C

NMR (100 MHz, CDCl₃) (*trans* isomer) δ 16.93, 18.66, 19.89, 32.92, 36.11, 109.95, 119.81, 120.46, 123.21, 126.04, 140.84, 168.52, 171.45 ppm. IR (neat) v 2933, 1792, 1666 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral IC), UV detector 220 nm, eluent: Hex/IPA = 9/1, Flow late = 1.0 mL/min, tR = 15.36 min (major product), tR = 17.18 min (minor product). HRMS (DART) calcd for C₁₉H₁₈N₂O₃ [M+H]⁺: 323.1395 found: 323.1394.

N-Acetoxy-N-methyl-2-(N-methylacetamido)cyclopropanecarboxamide (41)

According to the typical procedure for asymmetric cyclopropanation reaction between vinyl acetate (87.94 μ L, 0.95 mmol) and *N*-acetoxy-*N*-methyldiazoacetamide (30.0 mg, 0.19 mmol). The resulting mixture was

purified by silica gel column chromatography with *n*–Hexane/EtOAc (3/1 (v/v)) as an eluent to give the desired product in 86% yield as colorless oil. $[\alpha]^{28}{}_{\rm D} = -5.4$ (c 0.49, CHCl₃). *trans/cis* = 91:9, 76% *trans* ee. ¹H NMR (500 MHz, CDCl₃) (*trans* isomer) δ 1.29-1.34 (m, 1H), 1.52-1.57 (m, 1H), 1.92-1.97 (m, 1H), 2.12 (s, 3H), 2.23 (s, 3H), 2.85 (s, 3H), 3.20-3.24 (m, 1H), 3.31 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) (*trans* isomer) δ 17.99, 18.59, 21.44, 22.48, 33.54, 35.77, 40.31, 168.36, 170.95, 173.16 ppm. IR (neat) v 2929, 2359, 1792, 1654 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral AS-H), UV detector 230 nm, eluent: Hex/IPA = 6/4, Flow late = 1.0 mL/min, tR = 12.34 min (major product), tR = 15.62 min (minor product). HRMS (DART) calcd for C₁₀H₁₆N₂O₄ [M+NH₄]⁺: 246.1453 found: 246.1456.

6. Synthetic transformations of cyclopropyl Weinreb amides

10; 86% yield, 92% ee

2-Phenylcyclopropanecarbaldehyde (8)

Under argon atmosphere, to a solution of *N*-acetoxy-*N*-methyl-2-phenylcyclopropanecarboxamide **4c** (50 mg, 0.21 mmol) in THF (3 mL), was added LiAlH₄ (24 mg, 0.63 mmol) in small portions at 0 °C. After stirring for 1 h at 0 °C, H₂O (50 μ L), 20% NaOH (aq) (50 μ L), H₂O (100 μ L) was added

successively, and then stirred at room temperature for 2 h, after which the reaction was quenched by adding excess amount of saturated NH₄Cl aqueous solution, followed by extraction with diethyl ether. The organic phase was washed with brine and then dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was subjected to silica gel column chromatography using *n*–Hexane/EtOAc (2/1 (v/v)) as eluent to give the corresponding aldehyde **8** (94% yield, *trans/cis* = 99:1, 91% ee). ¹H NMR (500 MHz, CDCl₃) δ 1.51-1.55 (m, 1H), 1.71-1.75 (m, 1H), 2.14-2.19 (m, 1H), 2.60-2.64 (m, 1H), 7.10 (d, *J* = 7.63 Hz, 2H), 7.20-7.30 (m, 3H), 9.31 (d, *J* = 4.59, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 16.57, 26.68, 33.91, 126.34, 126.93, 128.70, 139.04, 199.83 ppm.² The ee value was determined by HPLC analysis. Column (Chiral AD3), UV detector 230 nm, eluent: Hex/IPA = 6/4, Flow late = 0.5 mL/min, tR = 10.37 min (minor product), tR = 11.42 min (major product).

((1*R*,2*R*)-2-phenylcyclopropyl)methanol (9)

Under argon atmosphere, to a solution of *N*-acetoxy-*N*-methyl-2phenylcyclopropanecarboxamide **4c** (50 mg, 0.21 mmol) in 3 mL THF, was added LiAlH₄ (48 mg, 1.26 mmol) in small portions at 0 °C. After stirring for 1 h at 0 °C, 100 μ L H₂O, 100 μ L 20% NaOH (aq), 200 μ L H₂O was added

successively, and then stirred at room temperature for 2 h, after which the reaction was quenched by adding excess amount of saturated NH₄Cl aqueous solution, followed by extraction with diethyl ether. The organic phase was washed with brine and then dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was subjected to silica gel column chromatography using petroleum *n*-Hexane/EtOAc (2/1 (v/v)) as eluent to give the corresponding alchohol **9** (87% yield, *trans/cis* = 99:1, 93% ee). $[\alpha]^{26}{}_{D}$ = -69.3 (c 0.49, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 0.94-0.98 (m, 2H), 1.42-1.49 (m, 1H), 1.80-1.84 (m, 1H), 3.58-3.65 (m, 2H), 7.06 (d, *J* = 6.12 Hz, 2H), 7.15 (t, *J* = 7.26 Hz, 1H), 7.24-7.27 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 13.95, 21.38, 25.41, 66.70, 125.75, 125.90, 128.44, 142.49 ppm.³ The ee value was determined by HPLC analysis. Column (Chiral OD-H), UV detector 254 nm, eluent: Hex/IPA = 9/1, Flow late = 0.5 mL/min, tR = 15.18 min (minor product), tR = 21.53 min (major product).

N-Hydroxy-N-methyl-2-phenylcyclopropanecarboxamide (10)

In a two way flask, NaOH aqua solution (15.4 mg, 0.39 mmol) was added from the side arm of the flask to a solution of *N*-acetoxy-*N*-methyl-2phenylcyclopropanecarboxamide 4c (30.0 mg, 0.13 mmol) in THF at 0 °C and the reaction mixture was stirred for 1 h. The reaction progress was monitored

using TLC. After the end of the reaction, the reaction mixture was concentrated and extracted using diethyl ether and the organic layer was dried using sodium sulfate anhydrous. Then the organic solvent was removed using reduced pressure and the residue was purified using column chromatography *n*-Hexane/EtOAc (1/1 (v/v)) to give the desired product **10** (86% yield, *trans/cis* = 99:1, 92% ee). $[\alpha]^{29}_{D} = -79.2$ (c 1.56, CHCl₃). ¹H NMR (500 MHz, CD₃OD) δ 1.27 (m, 1H), 1.45 (m, 1H), 2.32 (m, 1H), 2.59 (m, 1H), 3.21 (s, 3H), 3.27 (m, 1H), 7.09 (m, 3H), 7.21 (m, 2H) ppm. ¹³C NMR (125 MHz, CD₃OD) δ 15.42, 21.11, 25.20, 35.37, 125.82, 125.97, 128.13, 140.79, 173.19 ppm. IR (neat) v 3169, 2923, 2360, 2341, 1605 cm⁻¹. The ee value was determined by HPLC analysis. Column (Chiral IE), UV detector 230 nm, eluent: Hex/IPA = 9/1, Flow late = 1.0 mL/min, tR = 7.43 min (minor product), tR = 8.06 min (major product). HRMS (DART) calcd for C₁₁H₁₃NO₂ [M+H]⁺: 192.1022 found: 192.1024.

Phenyl(2-phenylcyclopropyl)methanone (11)

Under argon atmosphere, to a solution of *N*-methoxy-*N*-methyl-2-phenylcyclopropanecarboxamide **4a** (30.0 mg, 0.15 mmol) in 3 mL THF, was added PhMgBr (1 M in THF, 35 μ L, 0.45 mmol) at 0 °C. After stirring for 2 h at 0 °C, the reaction was quenched by adding excess amount of saturated NH₄Cl aqueous solution, followed by extraction with diethyl ether. The organic phase was washed with brine and then dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was subjected to silica gel column chromatography using petroleum Et₂O/EtOAc (10/1 (v/v)) as eluent to give the corresponding ketone (89% yield, 90% *trans* ee). ¹H NMR (500 MHz, CDCl₃) (*trans* isomer) δ 1.52-1.57 (m, 1H), 1.89-1.94 (m, 1H), 2.66-2.71 (m, 1H), 2.87-2.91 (m, 1H), 7.16-7.32 (m, 5H), 7.40-7.47 (m, 3H), 7.97-7.99 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) (*trans* isomer) δ 19.37, 29.41, 30.13, 126.32, 126.70, 128.09, 128.67, 133.02, 137.80, 140.58, 198.69 ppm.⁴ The ee value was determined by HPLC analysis. Column (Chiral AD), UV detector 254 nm, eluent: Hex/IPA = 60/1, Flow late = 0.5 mL/min, tR = 18.58 min (minor product), tR = 31.41 min (major product).

References:

- 1. T. Toma, J. Shimokawa, T. Fukuyama, Org. Lett., 2007, 9, 3195.
- 2. A. Isao, M. Atsunori, Y. Hisashi, J. Am. Chem. Soc., 1985, 107, 8254.
- 3. P. Jörg, C. M. Anja, W. Thorsten, W. Andreas, Adv. Synth. Catal., 2003, 345, 1273.
- 4. M. Olaf, W. Pablo, Helv. Chim. Acta., 2003, 68, 865.

No.	Time [min]	Area [µV-sec]	Area%
1	9.00	3265624	8.635
2	9.56	15598136	39.921
3	11.45	16120920	42.626
4	12.80	3334996	8.818

No.	Time [min]	Area [µV-sec]	Area%
1	9.1	2813	0.46
2	9.88	27635	4.58
3	11.90	509563	84.60
4	13.22	62246	10.33

No.	Time [min]	Area [µV-sec]	Area%
1	19.4	255618	3.78
2	20.3	220606	3.26
3	23.35	3124709	46.72
4	25.32	3152161	46.67

No.	Time [min]	Area [µV-sec]	Area%
1	19.2	316069	5.08
2	20.25	10671	0.17
3	23.17	573226	9.22
4	24.97	5317402	85.52

No.	Time [min]	Area [µV-sec]	Area%
1	17.95	5827797	41.74
2	20.62	5903145	41.56
3	24.91	1111962	5.51
4	28.31	1117682	5.60

No.	Time [min]	Area [µV-sec]	Area%
1	19.07	579541	3.93
2	21.96	13994561	94.90
3	30.06	126314	0.85
4	35.25	46176	0.31

No.	Time [min]	Area [µV-sec]	% Area
1	15.60	113411	0.445
2	21.19	12557536	49.22
3	24.20	120274	0.47
4	26.51	12717093	49.85

No.	Time [min]	Area [µV-sec]	Area%
1	21.90	1484504	4.94
2	26.64	28536137	95.05

No.	Time [min]	Area [µV-sec]	Area%
1	27.15	32365942	49.07
2	30.56	32871530	49.84
3	37.39	351018	0.53
4	41.30	360042	0.54

No.	Time [min]	Area [µV-sec]	Area%
1	27.70	616064	3.98
2	30.90	14861790	96.02

No.	Time [min]	Area[µV-sec]	Area%
1	24.94	290226	0.81
2	29.21	286204	0.79
3	32.51	17407845	48.59
4	42.65	17837736	49.79

No.	Time [min]	Area [µV-sec]	Area%
1	25.07	688	0.01
2	29.44	33623	0.69
3	33.49	145031	2.99
4	43.77	4656426	96.29

No.	Time [min]	Area [µV-sec]	Area%
1	14.33	358248	0.85
2	20.45	380165	0.90
3	23.47	20405576	48.64
4	29.55	20800479	49.59

No.	Time [min]	Area [µV-sec]	Area%
1	14.94	151276	0.72
2	19.13	41741	0.2
3	24.85	422371	2.02
4	27.60	20280047	97.05

No.	Time [min]	Area [µV-sec]	Area%
1	13.05	4377598	50.18
2	13.85	4345825	49.81

No.	Time [min]	Area [µV-sec]	Area%
1	13.27	2089043	95.414
2	14.19	100407	4.586

No.	Time [min]	Area [µV-sec]	Area%
1	15.75	16871308	49.978
2	18.95	16886310	50.022

No.	Time [min]	Area [µV-sec]	Area%
1	16.43	336053	4.10
2	19.83	7847894	95.89

No.	Time [min]	Area [µV-sec]	Area%
1	15.71	6599946	50.02
2	17.59	6593264	49.97

No.	Time [min]	Area [µV-sec]	Area%
1	15.36	9402883	98.071
2	17.18	178910	1.929

No.	Time [min]	Area [µV-sec]	Area%
1	7.45	1730152	7.61
2	9.28	1704502	7.50
3	12.42	79623440	42.35
4	15.65	79662923	42.52

No.	Time [min]	Area [µV-sec]	Area%
1	7.40	180900	2.84
2	9.17	568128	8.13
3	12.34	5355099	78.37
4	15.62	728703	10.66

No.	Time [min]	Area [µV-sec]	Area%
1	17.75	17411767	49.24
2	20.23	250234	0.70
3	24.95	225202	0.63
4	27.93	17467118	49.40

No.	Time [min]	Area [µV-sec]	Area%
1	17.85	6469084	86.36
2	20.18	23208	0.13
3	25.36	23666	0.13
4	28.29	974233	13.00

No.	Time [min]	Area [µV-sec]	Area%
1	10.66	2106736	50.79
2	11.350	2287697	49.21

No.	Time [min]	Area [µV-sec]	Area%
1	10.37	30751	4.511
2	11.42	650977	95.48

No.	Time [min]	Area [µV-sec]	Area%
1	15.18	59811	3.36
2	21.53	1715954	96.63

No.	Time [min]	Area [µV-sec]	Area%
1	18.58	970661	3.74
2	21.28	396186	1.53
3	23.54	5681480	21.93
4	31.41	18848868	72.78

No.	Time [min]	Area [µV-sec]	Area%
1	7.40	5623880	44.87
2	8.05	5952538	45.32
3	9.79	643097	5.000
4	10.70	642750	4.99

No.	Time [min]	Area [µV-sec]	Area%
1	7.43	442323	3.849
2	8.06	11050246	96.151