Cooperative Lewis Acidity in Fluorophosphonium Boranes

Juri Möbus‡, Thorsten vom Stein‡, Douglas W. Stephan*

‡ These authors contributed equally to this work.

Table of Content

1. Materials and Methods S-1
2. Synthesis and Spectroscopic Data S-2
3. Variable Temperature NMR Studies S-27
4. Catalysis Studies S-29

1 Materials and Methods

All manipulations were performed in a Glove box MB Unilab produced by MBraun or using standard Schlenk techniques under an inert atmosphere of anhydrous N₂. Dry, oxygen-free solvents (CH₂Cl₂, n-pentane, n-hexane, toluene) were prepared using an Innovative Technologies solvent purification system. Deuterated dichloromethane (CD₂Cl₂) was purchased from Cambridge Isotope Laboratories Inc., distilled from CaH₂ and stored over molecular sieves (4 Å) for at least two days prior to use. Deuterated bromobenzene (C₆D₅Br) was purchased from Cambridge Isotope Laboratories Inc. degassed and stored over molecular sieves (4 Å) for at least two days prior to use. If not stated otherwise commercial reagents were used as received without further purification. Commercial olefin substrates were routinely filtered over silica before use. XeF₂ was purchased from Apollo Scientific and used without further purification. All glassware was oven-dried at temperatures above 180°C prior to use. NMR spectra were measured on a Bruker AVANCE 400 ¹H (400.03 MHz), ¹³C (100.59 MHz), ¹⁹F (376.49 MHz), ³¹P (161.94 MHz), ¹¹B (128.37 MHz) at 25 °C, on an Agilent DD2 500 ¹H (499.7 MHz), ¹³C (125.7 MHz) at 27 °C, on an Agilent DD2 500 ¹H (499.9 MHz), ¹³C (125.7 MHz), ¹⁹F (470.3 MHz), ³¹P (202.4 MHz), ¹¹B (160.4 MHz) at 25 °C, on an Agilent DD2 600 ¹H (600.0 MHz), ¹³C (150.9 MHz), ¹⁹F (564.7 MHz), ³¹P (242.9 MHz), ¹¹B (192.5 MHz) at 26 °C or on an Agilent DD2 700 ¹H (700.0 MHz), ¹³C (176.0 MHz), ¹⁹F (658.0 MHz) at 27 °C. Assignments of the carbon atoms in the ¹³C spectra were performed via indirect deduction from the cross-peaks in 2D correlation experiments (HMBC; HSQC). Chemical shifts are relative to tetramethylsilane (δ¹H 0.0, δ¹³C 0.0) and were referenced to the residual proton signal of the deuterated solvent, CFCl₃ (external, δ¹⁹F 0.0), H₃PO₄ (85% in H₂O, external, δ³¹P 0.0), BF₃·OEt₂ (external, δ¹¹B 0.0). Chemical shifts (δ) are reported in ppm, multiplicity is reported as follows (s = singlet, d = doublet, t = triplet, q = quartet, pr.q. = partially...
relaxed quartet, \(p = \) pentet, \(m = \) multiplet, \(br = \) broad signal) and coupling constants \((J) \) are reported in Hz. Assignments of individual resonances were done using 2D techniques (HMBC, HSQC, HH-COSY) when necessary. Yields of products in solution were determined by integration of all resonances observed in the respective NMR spectra if not stated otherwise. High-resolution mass spectra (HRMS) were obtained on a micro mass 70S-250 spectrometer (EI), an ABI/Sciex QStar Mass Spectrometer (DART), or on a JOEL AccuTOF-DART (DART).

Compounds \(4^{[S1]} \), \(14^{[S2]} \), \(15^{[S3]} \), \(16^{[S3]} \) and \([\text{Et}_3\text{Si}][\text{B(C}_6\text{F}_5)_4]2(\text{C}_7\text{H}_8)^{[S4]} \) were synthesized according to literature procedures.

2 Synthesis and Spectroscopic Data

2.1 Synthesis of \(\text{o-Ph}_2\text{P(C}_6\text{H}_4)\text{BCy}_2 \) (2)

![Structure](structure.png)

The synthesis was done according to a modified literature procedure for \(\text{o-((iPr)_2P(C}_6\text{H}_4)\text{BCy}_2 \).\([S5]\)

To solution of \(\text{o-Ph}_2\text{P(C}_6\text{H}_4)\text{Br} \) (341.1 mg, 1.00 mmol) in 2 ml of THF was added 0.7 ml 1.6 M \(\text{n-BuLi} \) in hexanes at -30 °C. Subsequently a precooled (-30°C) solution of 1M \(\text{Cy}_2\text{BCl} \) in hexanes diluted with 4 ml THF was added dropwise. After the addition the solution was allowed to warm to room temperature and stirred for 20 h. Volatiles were removed and the residue was extracted with 10 ml of pentane. The resulting suspension was filtered over Celite and a small silica plug. Removal of volatiles gave the title compound 2 as a colorless oil (281.2 mg, 0.43 mmol, 64 %).

\(^1\text{H NMR} \) (600 MHz, 298 K, CD\(_2\)Cl\(_2\)): \(^1\text{H} \) 7.35 (m, 1H, \(\text{C}_\text{Ar} \)H), 7.33 - 7.27 (m, 11H, \(\text{C}_\text{Ar} \)H), 7.23 (m, 1H, \(\text{C}_\text{Ar} \)H), 7.01 (m, 1H, \(\text{C}_\text{Ar} \)H), 1.76 (m, 4H, \(\text{BCy}_2 \)), 1.62 (m, 6H, \(\text{BCy}_2 \)), 1.51 (m, 2H, \(\text{BCy}_2 \)) 1.20 – 1.04 (m, 10H, \(\text{BCy}_2 \)).

13C(1H) NMR (126 MHz, 298 K, CD$_2$Cl$_2$): δ^{13}C 158.8 (d, $^2J_{PC} = 51$ Hz, ipso C$_{Ar}$, P(C$_6$H$_4$)BCy$_2$), 138.2 (d, $^1J_{PC} = 9$ Hz, C$_{Ar}$H, P(C$_6$H$_4$)BCy$_2$), 134.6 (d, $^3J_{PC} = 2$ Hz, C$_{Ar}$H), 134.1 (d, $^4J_{PC} = 20$ Hz, C$_{Ar}$, P(C$_6$H$_4$)BCy$_2$), 133.6 (d, $^2J_{PC} = 17$ Hz, C$_{Ar}$H, PPh$_2$), 133.5 (d, $^4J_{PC} = 2$ Hz, C$_{Ar}$H, P(C$_6$H$_4$)BCy$_2$), 128.8 (s, C$_{Ar}$H, PPh$_2$), 128.7 (d, $^3J_{PC} = 7$ Hz, C$_{Ar}$H, PPh$_2$), 126.6 (d, $^1J_{PC} = 21$ Hz, C$_{Ar}$ PPh$_2$), 126.7 (d, $^3J_{PC} = 2$ Hz, C$_{Ar}$H, P(C$_6$H$_4$)BCy$_2$), 37.5 (bs, CH, BCy$_2$), 28.9 (bs, CH$_2$, BCy$_2$), 27.9 (s, CH$_2$, BCy$_2$), 26.9 (s, CH$_2$, BCy$_2$).

11B(1H) NMR (192 MHz, 298 K, CD$_2$Cl$_2$): δ 80.2 ($\nu_{1/2} \sim 1250$ Hz).

31P(1H) NMR (243 MHz, 298 K, CD$_2$Cl$_2$): δ -8.2 ($\nu_{1/2} \sim 4$ Hz).

MS (DART) [M+H] C$_{30}$H$_{37}$BP calc. 439.27259 m/z found 439.27405 m/z.
2.2 Synthesis of o-Ph2PF2(C6H4)BCy2 (3)

A 20 ml vial was charged with o-Ph2P(C6H4)BCy2 (2) (157.3 mg, 0.36 mmol), CH2Cl2 (5 ml) and a stirring bar. XeF2 (60.7 mg, 0.36 mmol, 1 eq.) was added to the stirred solution in small portions. Evolution of gas was observed upon addition. After complete addition the solution was stirred for 20 h at room temperature. Volatiles were removed and the residue recrystallized from 2 ml pentane at -30 °C. The resulting crystals were separated from the mother liquor and dried to give the title compound 3 as colorless solid (140 mg, 0.29 mmol, 82%).

1H NMR (600 MHz, 298 K, CD2Cl2): δ 1H 8.33 (m, 1H, C6H4), 7.94 (m, 4H, o-Ph), 7.60 - 7.46 (m, 7H, p-Ph, m-Ph, C6H4), 7.42 (m, 1H, C6H4), 7.34 (m, 1H, C6H4), 1.47 (m, 2H, BCy2), 1.41 (m, 4H, BCy2), 1.22 (m, 4H, BCy2), 0.89 (m, 6H), 0.63 (m, 2H BCy2), 0.54 (m, 4H, BCy2).

13C{1H} NMR (126 MHz, 298 K, CD2Cl2): δ 13C 167.7 (bm, ipso CAr, B, PPhBCy2), 135.0 (dt, 2 JPC = 18 Hz, 3 JFC = 12 Hz, CArH, PPhBCy2), 134.0 (d, 1 JPC = 157 Hz, 2 JFC = 25 Hz, CAr, PPh2), 132.6 - 132.3 (m, CArH PPh2 and PPhBCy2), 130.1 (dt, 3 JPC = 22 Hz, 4 JFC = 7 Hz, CArH, PPhBCy2), 128.8 (d, 3 JPC = 17 Hz, CArH, PPh2), 126.3 (dt, 3 JPC = 17 Hz, 4 JFC = 1.9 Hz, CArH, PPhBCy2), 124.9 (dt, 1 JPC = 156 Hz, 2 JFC = 17 Hz, CAr, PPhBCy2), 32.4 (bs, CH, BCy2), 30.0 (m, CH2, BCy2), 29.1 (d, JFC = 23 Hz, CH2, BCy2), 27.8 (s, CH2, BCy2).

11B NMR (192 MHz, 298 K, CD2Cl2): δ 11B 29.7 (v1/2 ~ 710 Hz).

19F NMR (564 MHz, 298 K, CD2Cl2): -76.0 (br), -76.8 (br).

31P NMR (243 MHz, 298 K, CD2Cl2): -10.1 (m).
H NMR (600 MHz, 298 K, CD₂Cl₂) spectrum of o-Ph₂PF(C₆H₄)BCy₂ (3).

¹³C{¹H} NMR (126 MHz, 298 K, CD₂Cl₂) spectrum of o-Ph₂PF(C₆H₄)BCy₂ (3).

¹¹B{¹H} NMR (192 MHz, 193 K, CD₂Cl₂): n.o.

¹⁹F NMR (564 MHz) and ³¹P{¹H} NMR (243 MHz) spectra (298 K, CD₂Cl₂) of o-Ph₂PF(C₆H₄)BCy₂ (3).

Data at 193 K:

¹¹B NMR (192 MHz, 193 K, CD₂Cl₂): n.o.
19F NMR (564 MHz, 193 K, CD$_2$Cl$_2$): δ^{19F} -75.31 (d, $J_{PF} = 725$ Hz, FP$_{terminal}$), -83.06 (d, $J_{PF} = 267$ Hz, FP$_{bridging}$).

31P {1H} NMR (243 MHz, 193 K, CD$_2$Cl$_2$): δ^{31P} -9.7 (dd, $J_{PF} = 725$ Hz, $J_{PFB} = 267$ Hz).

MS (DART) [M-F] C$_{39}$H$_{36}$BFP$^+$ calc 457.26317 m/z found. 457.26401 m/z

Crystals suitable for X-ray crystal structure analysis were obtained by slow evaporation of a pentane solution of compound 3.

2.3 Synthesis of o-Ph$_2$PF$_2$(C$_6$H$_4$)BMes$_2$ (5)

A 20 ml vial was charged with o-Ph(C$_6$H$_4$)BMes$_2$ (4) (51.7 mg, 0.101 mmol) and CH$_2$Cl$_2$ (2 ml). XeF$_2$ (17.1 mg, 0.101 mmol) was added in small portions to the stirred solution of 4. Gas evolution was observed upon addition. The resulting clear solution was then stirred for 6 h at room temperature. Volatiles were removed in vacuum and the resulting colorless powder was washed three times with pentane (2 ml) giving the title compound 5 as colorless powder (48.1 mg, 0.088 mmol, 87%).
1H NMR (600 MHz, 298 K, CD$_2$Cl$_2$): δ1H 8.13 (m, 1H, C$_6$H$_4$), 7.60 (m, 4H, o-Ph1), 7.44 (m, 2*1H, C$_6$H$_4$), 7.34 (m, 2H, p-Ph1), 7.30 (m, 1H, C$_6$H$_4$), 7.20 (m, 4H, m-Ph1), 6.45 (br, 4H, m-Mes), 2.12 (br, 6H, p-Me), 1.81 (br, 12H, o-Me).

13C(1H) NMR (126 MHz, 298 K, CD$_2$Cl$_2$): δ13C 157.3 (br, i-B-C$_6$H$_4$), 140.4 (dt, 1J$_{PC}$ = 182 Hz, 2J$_{FC}$ = 29 Hz, i-P-C$_6$H$_4$), 139.1 (br, Mes), 138.1 (dt, 1J$_{PC}$ = 177 Hz, 2J$_{FC}$ = 28 Hz, i-Ph), 136.5 (dt, J = 17 Hz, J = 11 Hz, C$_6$H$_4$), 134.3 (d, 2J$_{PC}$ = 19 Hz, C$_6$H$_4$), 133.3 (dt, 2J$_{PC}$ = 13 Hz, 3J$_{FC}$ = 8 Hz, o-Ph1), 131.4 (d, J = 4 Hz, C$_6$H$_4$), 130.3 (d, J = 4 Hz, C$_6$H$_4$), 129.0 (br, p-Ph and Mes), 128.1 (d, 3J$_{PC}$ = 17 Hz, m-Ph), 23.7 (br, o-Me), 21.2 (s, p-Me). Tentatively assigned. Not assigned: Mes.

11B(1H) NMR (192 MHz, 298 K, CD$_2$Cl$_2$): 67.6 ($\nu_{1/2} \sim$ 1500 Hz).

19F NMR (564 MHz, 298 K, CD$_2$Cl$_2$): -37.2 (d, 3J$_{PF}$ = 663 Hz).

31P(1H) NMR (243 MHz, 298 K, CD$_2$Cl$_2$): -49.0 (t, 3J$_{PF}$ = 663 Hz).

MS (DART) [M-F] C$_{36}$H$_{36}$BFP$^+$ calc. 529.26317 m/z found 529.26267 m/z.

1H NMR (600 MHz, 298 K, CD$_2$Cl$_2$) spectrum of o-Ph$_2$PF$_2$(C$_6$H$_4$)BMes$_2$ (5).
$^{13}\text{C}^{\{1\text{H}\}}$ NMR (126 MHz, 298 K, CD$_2$Cl$_2$) spectrum of o-Ph$_2$PF$_2$(C$_6$H$_4$)BMes$_2$ (5).

$^{11}\text{B}^{\{1\text{H}\}}$ NMR (192 MHz, 298 K, CD$_2$Cl$_2$), ^{19}F (564 MHz, 298 K, CD$_2$Cl$_2$) and $^{31}\text{P}^{\{1\text{H}\}}$ NMR (243 MHz, 298 K, CD$_2$Cl$_2$) spectra of o-Ph$_2$PF$_2$(C$_6$H$_4$)BMes$_2$ (5).
2.4 Synthesis of o-Ph$_2$P(C$_6$F$_4$)Br (6)

![Chemical Structure](image)

1,2-dibromo-tetrafluorobenzene (2.00 g, 6.5 mmol, 1 eq.) was dissolved in Et$_2$O (30 ml), cooled to -50 °C and "Turbo-Grignard" solution (iPrMgCl-LiCl, 1.3 M in THF, 5.0 ml, 6.5 mmol, 1 eq.) was added dropwise over 20 min and the resulting colorless solution stirred for 2.5 h allowing to warm to 0 °C. A light, colorless precipitate had formed. The suspension was cooled to -60 °C and Ph$_2$PCl was added neat at once to the vigorously stirred suspension. The reaction mixture was allowed to warm to room temperature slowly and stirred overnight. Then, volatiles were removed in vacuum at 50 °C and the residue taken up in hexanes (20 ml) and silica gel (ca. 5 ml) was added. The insoluble components were removed by filtration in a glovebox and washed with pentane (10 ml) twice. The combined mother and wash liquors were evaporated to dryness to give 2.21 g crude product. It was taken up in pentane (5 ml) at room temperature and the suspension allowed to further precipitate at -35 °C. The supernatant was removed by decantation at -35 °C and the precipitate washed with pentane (2 ml) twice at -35 °C. Drying of the precipitate in vacuum gave compound 6 as colorless solid (2.15 g, 5.2 mmol, 84%).

1H NMR (400 MHz, 298 K, C$_6$D$_6$): δ^1H 7.40 (m, 2H, o-Ph), 7.07 (m, 3H, p-, m-Ph).

13C(1H) NMR (101 MHz, 298 K, C$_6$D$_6$): δ^{13}C 134.4 (dd, $J = 12.7$ Hz, $J = 3.3$ Hz, i-Ph), 133.2 (dd, 2J$^{PC} = 21.2$ Hz, 1J$^{PF} = 1.6$ Hz, o-Ph), 129.4 (s, p-Ph), 128.9 (d, 3J$^{PC} = 6.8$ Hz, m-Ph). Not observed: C$_6$F$_4$Br.

19F NMR (376 MHz, 298 K, C$_6$D$_6$): δ^{19}F -121.6 (m, 1F), -126.1 (m, 1F), -149.4 (m, 1F), -154.4 (m, 1F).

31P(1H) NMR (162 MHz, 298 K, C$_6$D$_6$): δ^{31}P -2.5 (ddd, 3J$^{PF} = 20.7$ Hz, 10.5 Hz, 4.5 Hz).

31P NMR (162 MHz, 298 K, C$_6$D$_6$): δ^{31}P -2.5 (m).
H NMR (400 MHz, 298 K, C\textsubscript{6}D\textsubscript{6}) spectrum of o-Ph\textsubscript{2}P(C\textsubscript{6}F\textsubscript{4})Br (6).

13C\{1H\} NMR (101 MHz, 298 K, C\textsubscript{6}D\textsubscript{6}) spectrum of o-Ph\textsubscript{2}P(C\textsubscript{6}F\textsubscript{4})Br (6).

19F NMR (376 MHz, 298 K, C\textsubscript{6}D\textsubscript{6}) and 31P NMR (162 MHz, 298 K, C\textsubscript{6}D\textsubscript{6}) spectra of o-Ph\textsubscript{2}P(C\textsubscript{6}F\textsubscript{4})Br (6).

1H NMR (400 MHz, 298 K, C\textsubscript{6}D\textsubscript{6}) spectrum of o-Ph\textsubscript{2}P(C\textsubscript{6}F\textsubscript{4})Br (6).

13C\{1H\} NMR (101 MHz, 298 K, C\textsubscript{6}D\textsubscript{6}) spectrum of o-Ph\textsubscript{2}P(C\textsubscript{6}F\textsubscript{4})Br (6).

19F NMR (376 MHz, 298 K, C\textsubscript{6}D\textsubscript{6}) and 31P NMR (162 MHz, 298 K, C\textsubscript{6}D\textsubscript{6}) spectra of o-Ph\textsubscript{2}P(C\textsubscript{6}F\textsubscript{4})Br (6).
2.5 Synthesis of o-Ph$_2$P(C$_6$F$_4$)BCy$_2$ (7)

![Diagram of o-Ph$_2$P(C$_6$F$_4$)BCy$_2$ (7)]

o-Ph$_2$P(C$_6$F$_4$)Br (6) (750 mg, 1.82 mmol, 1 eq.) was dissolved in Et$_2$O (20 ml), cooled to -60 °C and “Turbo-Grignard” solution (iPrMgCl-LiCl, 1.3 M in THF, 1.4 ml, 1.82 mmol, 1 eq.) was added dropwise over 15 min, the resulting colorless solution stirred for 2 h allowing to warm to -20 °C and another 2 h maintaining the temperature between -30 °C and -20 °C. A light, colorless precipitate had formed. The suspension was cooled to -50 °C and Cy$_2$BCl (1 M in hexanes, 1.9 ml, 1.9 mmol, 1.05 eq) was added at once to the vigorously stirred suspension. The reaction mixture was allowed to warm to room temperature slowly and stirred overnight. Then, volatiles were removed in vacuum at 40 °C and the residue taken up in pentane (30 ml) at room temperature. The insoluble components were removed by filtration over Celite in a glovebox and washed with pentane (10 ml) twice. The combined, colorless filtrates were concentrated in vacuum to ca. 5 ml and cooled to -35 °C. Then, a seed crystal of 7 was added and the product allowed to crystallize overnight at -35 °C. The supernatant was removed by decantation at -35 °C and the residue washed with cold pentane (1 ml) at -35 °C three times. Drying of the precipitate in vacuum afforded compound 7 as colorless solid (835 mg, 1.64 mmol, 90%).

1H NMR (400 MHz, 298 K, C$_6$D$_6$): δ1H 7.44 (m, 4H, o-Ph), 7.04 (m, 6H, p-, m-Ph), 1.92 (m, 4H, BCy$_2$), 1.76 (m, 2H, BCy$_2$), 1.68 (m, 4H, BCy$_2$), 1.65 (m, 2H, B-CH), 1.34 (m, 2H, BCy$_2$), 1.21 (m, 8H, BCy$_2$).

13C(1H) NMR (101 MHz, 298 K, C$_6$D$_6$): δ13C 134.4 (d, 2J$_{PC} = 16.9$ Hz, 1J$_{PF} = 2.1$ Hz, o-Ph), 129.6 (s, p-Ph), 128.9 (d, 3J$_{PC} = 7.5$ Hz, m-Ph), 37.5 (br s, BCH), 30.2 (d, 1J$_{PF} = 9.0$ Hz), 29.3 (d, 1J$_{PF} = 4.5$ Hz), 28.3 (s), 28.2 (s), 27.2 (s). Not observed: C$_6$F$_4$.

11B(1H) NMR (128 MHz, 298 K, C$_6$D$_6$): δ11B 76.7 ($v_{1/2} \sim 2000$ Hz).

19F NMR (376 MHz, 298 K, C$_6$D$_6$): δ19F -125.4 (m, 1F), -132.5 (m, 1F), -150.4 (m, 1F), -155.5 (m, 1F).

31P(1H) NMR (162 MHz, 298 K, C$_6$D$_6$): δ31P -5.8 (d, 3J$_{PF} = 15.0$ Hz).

31P NMR (162 MHz, 298 K, C$_6$D$_6$): δ31P -5.8 (m).
H NMR (400 MHz, 298 K, C₆D₆) spectrum of o-Ph₂P(C₆F₄)BCy₂ (7).

¹³C{¹H} NMR (101 MHz, 298 K, C₆D₆) spectrum of o-Ph₂P(C₆F₄)BCy₂ (7).

¹¹B{¹H} NMR (128 MHz, 298 K, C₆D₆), ¹⁹F NMR (376 MHz, 298 K, C₆D₆) and ³¹P NMR (162 MHz, 298 K, C₆D₆) spectra of o-Ph₂P(C₆F₄)BCy₂ (7).
2.6 Synthesis of o-Ph$_2$PF$_2$(C$_6$F$_4$)BCy$_2$ (8)

![Structural diagram](image_url)

o-Ph$_2$P(C$_6$F$_4$)BCy$_2$ (7) (375 mg, 0.73 mmol, 1 eq.) was dissolved in CH$_2$Cl$_2$ (5 ml) in a glovebox and pre-cooled to -35 °C before addition of XeF$_2$ (122 mg, 0.72 mmol, 0.98 eq) in portions in the glovebox cold well. The resulting clear solution was stirred for 1 h at -35 °C, then the cooling was removed, the solution allowed to warm to room temperature and stirred another 3 h at room temperature. Then, the solution was saturated in vacuum (to ca. 1 ml) and pentane (3 ml) was added, which resulted in heavy colorless precipitation. The product was allowed to fully precipitate at -35 °C overnight. The supernatant was removed by decantation at -35 °C and the residue washed with cold pentane (1 ml) twice at -35 °C. Drying of the precipitate in vacuum gave the title compound 8 as colorless solid (375 mg, 0.68 mmol, 95%).

1H NMR (400 MHz, 298 K, CD$_2$Cl$_2$): δ1H 8.02 (m, 4H, o-Ph), 7.63 (m, 2H, p-Ph), 7.55 (m, 4H, m-Ph), 1.43 (m, 6H, BCy$_2$), 1.17 (m, 4H, BCy$_2$), 0.89 (m, 6H, BCy$_2$), 0.59 (m, 4H, BCy$_2$), 0.49 (m, 2H, BCy$_2$).

1H NMR (700 MHz, 300 K, C$_6$D$_6$): δ1H 7.81 (m, 4H, o-Ph), 7.02 (m, 2H, p-Ph), 6.99 (m, 4H, m-Ph), 1.69 (m, 2H, BCy$_2$), 1.17 (m, 4H, BCy$_2$), 1.66 (m, 4H, BCy$_2$), 1.48 (m, 2H, BCy$_2$), 1.44 (m, 2H, BCy$_2$), 1.20 (m, 2H, BCy$_2$), 1.14 (m, 2H, BCy$_2$), 1.06 (m, 2H, BCy$_2$), 0.87 (m, 2H, BCh)a, 0.84 (m, 2H, BCy$_2$), 0.72 (m, 2H, BCy$_2$). a from ghsqc

13C(1H) NMR (176 MHz, 300 K, C$_6$D$_6$): δ13C 133.0 (dt, 1J$_{PC}$ = 163.9 Hz, 2J$_{FC}$ = 24.9 Hz, i-Ph), 132.8 (m, o-Ph, p-Ph), 128.8 (d, 3J$_{PC}$ = 17.1 Hz, m-Ph), 31.4 (br s, BCh), 30.2 (s, BCy$_2$), 30.0 (s, BCy$_2$), 29.1 (s, BCy$_2$), 29.0 (s, BCy$_2$), 27.8 (s, BCy$_2$). Not assigned: C$_6$F$_4$.

11B(1H) NMR (128 MHz, 298 K, CD$_2$Cl$_2$): δ11B 30.7 ($^v_{1/2}$ ~ 740 Hz).

19F NMR (376 MHz, 298 K, CD$_2$Cl$_2$): δ19F -66.6 (dd, 1J$_{PF}$ = 545.4 Hz, 1J$_{FF}$ = 70.8 Hz, 2F, PF$_2$), -125.9 (tm, 1J$_{PF}$ = 70.8 Hz, 1F), -130.4 (m, 1F), -147.4 (m, 1F), -157.7 (m, 1F).

31P(1H) NMR (162 MHz, 298 K, CD$_2$Cl$_2$): δ31P -9.8 (t, 1J$_{PF}$ = 545.4 Hz).

31P NMR (162 MHz, 298 K, CD$_2$Cl$_2$): δ31P -9.8 (m).
1H NMR (400 MHz, 298 K, CD$_2$Cl$_2$) spectrum of o-Ph$_2$PF$_2$(C$_6$F$_4$)BCy$_2$ (8).

1H NMR (700 MHz, 300 K, C$_6$D$_6$) spectrum of o-Ph$_2$PF$_2$(C$_6$F$_4$)BCy$_2$ (8).

13C{1H} NMR (176 MHz, 300 K, C$_6$D$_6$) spectrum of o-Ph$_2$PF$_2$(C$_6$F$_4$)BCy$_2$ (8).
Crystals suitable for X-ray structure analysis were obtained by cooling of a saturated solution of compound 8 in pentane to -35 °C.

2.7 **Synthesis of [o-Ph₂PF(C₆H₄)BCy₂][B(C₆F₅)₄] (9)**

![Diagram of compound 9]

To a solution of o-Ph₂PF₂(C₆H₄)BCy₂ (3) (119.1 mg, 0.25 mmol) in toluene (4 ml) was added freshly prepared [Et₃Si][B(C₆F₅)₄]·2C₇H₈ (220.1 mg, 0.225 mmol, 0.9 eq.). The resulting suspension was stirred at room temperature for 20 min. The resulting suspension separated into a yellow oil and colorless supernatant upon standing. The supernatant was removed by decantation and the oil was treated with 3 x 2 ml of pentane. The resulting white powder was dried and then recrystallized by taking it up in CH₂Cl₂ (1 ml) and precipitation with pentane (3 ml). The resulting solid was washed three times with pentane (2 ml) and dried in vacuum. Finally, the solid was re-dissolved in CH₂Cl₂ (1 ml) and the volatiles were removed in order to get rid of co-crystallizing pentane. Compound 9 was obtained as colorless solid (193.4 mg, 0.17 mmol, 76%).

¹H NMR (500 MHz, 298 K, CD₂Cl₂): δ¹H 8.05 (m, 2H, p-Ph), 7.94 (m, 1H, C₆H₄), 7.81 (m, 4H, m-Ph), 7.73 (m, 4H, o-Ph), 7.62 (m, 1H, C₆H₄), 7.52 (m, 1H, C₆H₄), 7.43 (m, 1H, C₆H₄), 1.64 (br m, 10H, BCy₂), 1.40 (m, 2H, BCH), 1.07 (m, 10H, BCy₂). ¹tentatively assigned.

¹³C(¹H) NMR (126 MHz, 298 K, CD₂Cl₂): δ¹³C 156.1 (p.r. quart., i-B-C₆H₄), 148.5 (d, ¹JFC ~ 245 Hz, o-C₆F₅), 139.1 (s, p-Ph), 138.6 (d, ¹JFC ~ 245 Hz, p-C₆F₅), 136.8 (d, ¹JFC ~ 245 Hz, m-C₆F₅), 136.1 (d, J
= 3.5 Hz, C₆H₄), 134.3 (dd, ⁳JₚC = 13.4 Hz, ⁴JₚC = 1.3 Hz, m-Ph), 133.9 (dd, J = 21.8 Hz, J = 3.5 Hz, C₆H₄), 131.3 (d, ²JₚC = 14.4 Hz, o-Ph), 128.5 (m, C₆H₄), 128.3 (m, C₆H₄), 124.5 (br, i-C₆F₅), 118.0 (dd, ¹JₚC = 104.9 Hz, ³JₚC = 14.2 Hz, i-Ph), 113.3 (dd, ¹JₚC = 110.3 Hz, ³JₚC = 13.9 Hz, i-P-C₆H₄), 38.1 (m, CH, BCy₂), 28.5 (br m, BCy₂), 27.8 (br, BCy₂), 26.8 (br, BCy₂). ¹ tentatively assigned.

¹¹B{¹H} NMR (128 MHz, 298 K, CD₂Cl₂): δ¹¹B 83.5 (υ₁/₂ ~ 1500 Hz).

¹⁹F NMR (376 MHz, 298 K, CD₂Cl₂): δ¹⁹F -129.6 (d, JₚF = 980 Hz, FP), -133.1 (m, 8F, o-C₆F₅), -163.8 (m, 4F, p-C₆F₅), -167.7 (m, 8F, m-C₆F₅).

³¹P{¹H} NMR (162 MHz, 298 K, CD₂Cl₂): δ³¹P 97.5 (d, JₚF = 980 Hz).

¹H NMR (500 MHz, 298 K, CD₂Cl₂) spectrum of [o-Ph₂PF(C₆H₄)BCy₂][B(C₆F₅)₄] (9).

¹³C{¹H} NMR (126 MHz, 298 K, CD₂Cl₂) of [o-Ph₂PF(C₆H₄)BCy₂][B(C₆F₅)₄] (9).
Crystal suitable for X-ray crystal structure analysis were obtained by crystallization from 3:1 mixture of pentane : CH₂Cl₂.

2.8 Synthesis of [o-Ph₂PF(C₆H₄)BMes₂][B(C₆F₅)₄] (10)

To a solution of o-Ph₂PF₂(C₆H₄)BMes₂ (5) (34.7 mg, 0.063 mmol) in toluene (2 ml) was added freshly prepared [Et₃Si][B(C₆F₅)₄]·2C₇H₈ (57.7 mg, 0.059 mmol, 0.95 eq.). The resulting suspension was stirred at room temperature for 20 min. The suspension separated into a yellow oil and colorless supernatant upon standing. The supernatant was removed by decantation and the oil was treated with 3 x 2 ml of pentane. The resulting white powder was dried in vacuum, yielding the title compound 10 (58.1 mg, 0.048 mmol, 82%).

¹H NMR (600 MHz, 298 K, CD₂Cl₂): δ¹H 7.93 (m, 3H, CArH), 7.79 (m, 1H, CArH), 7.74 (m, 1H, CArH), 7.63 (m, 4 H, CArH), 7.53 (m, 1H, CArH), 7.32 (bs, 4H, CArH), 6.94 (bs, 1H, CArH, BMes₂), 6.88 (bs, 1H, CArH, BMes₂), 6.73 (bs, 1H CArH, BMes₂), 5.79 (bs, 1H, CArH BMes₂), 2.33 (bs, 3H, o-CH₃ BMes₂), 2.19 (bs, 3H, o-CH₃ BMes₂), 2.09 (bs, 3H, p-CH₃ BMes₂), 2.01 (bs, 3H, o-CH₃ BMes₂), 1.95 (bs, 3H, p-CH₃ BMes₂), 1.33 (bs, 3H, o-CH₃ BMes₂). The mesityl rings are not equivalent, probably due to a hindered rotation because of the steric bulk of the Mes groups.

¹³C(¹H) NMR (126 MHz, 298 K, CD₂Cl₂): δ¹³C 157.3 (m, ipso B-CAr, P(C₆H₄)B), 148.5 (d, ¹JPC = 240.9 Hz, B(C₆F₅)₄), 142.4 (bs, C₆H), 142.2 (bs, C₆H), 141.9 (bs, C₆H), 141.2 (d, ¹JPC = 211.1 Hz, B(C₆F₅)₄), 138.6 (d, ¹JPC = 244.4 Hz, B(C₆F₅)₄), 138.7 (bs, FPPPh₂), 137.5 (d, ¹JPC = 3 Hz, C₆H, P(C₆H₄)B) 134.5 (m, C₆H, FPPPh₂), 137.1 (dd, J = 6.6 z, 1.7 Hz, C₆H, P(C₆H₄)B), 137.0 (bs, C₆H, P(C₆H₄)B), 136.6 (bs, C₆H) 131.1 (dd, J = 6.6 z, 1.7 Hz, CArH, P(C₆H₄)B), 130.6 (m, C₆H, FPPPh₂), 130.7 (bs, CAr) 129.3 (bs, C₆H, Mes, 4C), 124.4 (m, B(C₆F₅)₄), 121.1 (m, ipso C₆H, Mes), 102.8 (m, ipso CAr), 118.5 (dd, ¹JPC = 105 Hz, ²JPC = 11.5 Hz, ipso Ph₂PF), 24.3 (bs, o-CH₃, BMes₂), 23.8 (bs, o-CH₃, BMes₂), 22.9 (bs, p-
CH₃, BMes₂, 2C), 21.4 (bs, o-CH₃, BMes₂), 21.2 (bs, o-CH₃, BMes₂). Mesitl rings are not equivalent, giving 7 different signals as the CH carbons overlap. Not all quarternary carbons could be assigned due to the complexity and overlapping peaks.

¹¹B NMR (192 MHz, 298 K, CD₂Cl₂): δ¹¹B 73.5 (ν₁/₂ ~ 2000 Hz, BMes₂), -16.7 (ν₁/₂ ~ 50 Hz [B(C₆F₅)₄]).

¹⁹F NMR (564 MHz, 298 K, CD₂Cl₂): δ¹⁹F -126.7 (d, JₚF = 999.5 Hz, PF), -133.1 (m, 8F, o-F, [B(C₆F₅)₄]), 163.8 (t, J = 20 Hz, 4F, p-F, [B(C₆F₅)₄]), -167.7 (m, 8F, m-F [B(C₆F₅)₄]).

³¹P{¹H} NMR (243 MHz, 298 K, CD₂Cl₂): δ³¹P -98.2 (d, JₚF = 999.5 Hz).

¹H NMR (600 MHz, 298 K, CD₂Cl₂) spectrum of [o-Ph₂PF(C₆H₄)BMes₂][B(C₆F₅)₄](10).

¹³C{¹H} NMR (126 MHz, 298 K, CD₂Cl₂) spectrum of [o-Ph₂PF(C₆H₄)BMes₂][B(C₆F₅)₄](10).

¹¹B{¹H} NMR (192 MHz, 298 K, CD₂Cl₂), ¹⁹F (564 MHz, 298 K, CD₂Cl₂) and ³¹P{¹H} NMR (243 MHz, 298 K, CD₂Cl₂) spectra of [o-Ph₂PF(C₆H₄)BMes₂][B(C₆F₅)₄](10).
2.9 Synthesis of \([\text{o-Ph}_2\text{PF(C}_6\text{F}_4)\text{BCy}_2]\)\([\text{B(C}_6\text{F}_5)_4]\) (11)

![Diagram of compound 11]

In a glovebox, \([\text{Ph}_3\text{C}]\)\([\text{B(C}_6\text{F}_5)_4]\) (400 mg, 0.43 mmol, 0.95 eq.) was dissolved in toluene (5 ml) and triethylsilane (160 mg, 1.37 mmol, 3 eq) was added to the stirred deep red solution. The solution turns into an almost colorless suspension quickly which was stirred for 1 h at room temperature. Then the suspended red oil was left to settle and was separated from the supernatant solution with a pipette and added dropwise to a solution of \(\text{o-Ph}_2\text{PF}_2(\text{C}_6\text{F}_4)\text{BCy}_2\) (8) (250 mg, 0.46 mmol, 1 eq) in toluene (5 ml) at -35 °C. The resulting suspension was stirred at room temperature for 1 h at -35 °C and another 3 h at room temperature. Then pentane (5 ml) was added and the resulting suspension separated into a pale-orange oil and colorless supernatant upon standing. The supernatant was removed by decantation and the oil was washed with pentane (2 ml) twice. The oily residue was then taken up in CH\(_2\)Cl\(_2\) and stirred for 2 h at room temperature to ensure full consumption of the in-situ generated \([\text{Et}_3\text{Si}][\text{B(C}_6\text{F}_5)_4]\) before precipitation with pentane (10 ml). The oily phase of the biphasic mixture was allowed to solidify at -35 °C before removing the supernatant by decantation and washing of the residue with pentane (2 ml) twice. Drying in vacuum yields the title compound 11 as colorless foamy powder (486 mg, 0.40 mmol, 93%).

\(\text{^1H NMR}\) (500 MHz, 298 K, CD\(_2\)Cl\(_2\)): \(\delta^1\text{H} 8.11\) (m, 2H, \(\text{p-Ph}\)), 7.85 (m, 8H, \(\text{o-Ph}\)), 1.77 (m, 4H, CH\(_2\), BCy\(_2\)), 1.65 (m, 6H, CH\(_2\), BCy\(_2\)), 1.55 (br, 2H, CH, BCy\(_2\)), 1.14 (m, 10H, CH\(_2\), BCy\(_2\)).

\(\text{^13C}^{(\text{1H})}\) NMR (126 MHz, 298 K, CD\(_2\)Cl\(_2\)): \(\delta^{13\text{C}} 151.4\) (br m, C\(_6\)), 148.4 (d, \(1^\text{JFC} = 240 \text{ Hz, o-C}_6\text{F}_5\)), 146.8 (dm, \(1^\text{JFC} \sim 275 \text{ Hz, C}_4\)), 145.2 (ddd, \(1^\text{JFC} \sim 243 \text{ Hz, J } \sim 24 \text{ Hz, J } \sim 11 \text{ Hz, C}_2\)), 140.3 (t, \(4^\text{JPC}=5^\text{JFC} = 2.4 \text{ Hz, p-Ph}\)), 140.2 (dm, \(1^\text{JFC} = 260 \text{ Hz, C}_3\)), 139.1 (dm, \(1^\text{JFC} = 274 \text{ Hz, C}_5\)), 138.6 (dm, \(1^\text{JFC} \sim 245 \text{ Hz, p-C}_6\text{F}_5\)), 136.6 (dm, \(1^\text{JFC} \sim 241 \text{ Hz, m-C}_6\text{F}_5\)), 134.1 (dt, \(2^\text{JPC} = 14.4 \text{ Hz, JFC} \sim 5^\text{JFC} = 1.5 \text{ Hz, o-Ph}\)), 131.7 (dd, \(3^\text{JPC} = 15.1 \text{ Hz, JFC} = 0.7 \text{ Hz, m-Ph}\)), 124.4 (br, \(i\text{-C}_6\text{F}_5\)), 115.4 (dd, \(1^\text{JPC} = 107.7 \text{ Hz, JFC} = 13.2 \text{ Hz, i-Ph}\)), 99.8 (dm, \(1^\text{JFC} \sim 120 \text{ Hz, C}_1\)), 38.3 (br, BCH), 29.2 (d, \(J = 1.8 \text{ Hz, CH}_2, \text{BCy}_2\)), 28.6 (m, \(\text{CH}_2, \text{BCy}_2\)), 27.8 (\(\text{CH}_2, \text{BCy}_2\)), 27.6 (\(\text{CH}_2, \text{BCy}_2\)), 26.6 (\(\text{CH}_2, \text{BCy}_2\)).

\(\text{^11B}^{(\text{1H})}\) NMR (128 MHz, 298 K, CD\(_2\)Cl\(_2\)): \(\delta^{11\text{B}} 84.8\) (\(\nu_{1/2} \sim 1500 \text{ Hz}\)).

\(\text{^19F NMR}\) (376 MHz, 298 K, CD\(_2\)Cl\(_2\)): \(\delta^{19\text{F}} -119.0\) (m, 1F, \(\text{C}_6\text{F}_4\)), -122.8 (m, 1F, \(\text{C}_6\text{F}_4\)), -128.2 (dm, \(1^\text{JFF} = 977 \text{ Hz, PF}\)), -133.1 (m, 8F, \(\text{o-C}_6\text{F}_5\)), -135.9 (m, 1F, \(\text{C}_6\text{F}_4\)), -150.4 (m, 1F, \(\text{C}_6\text{F}_4\)), -163.8 (t, \(3^\text{JFF} = 20.4 \text{ Hz, 4F, p-C}_6\text{F}_5\)), -167.6 (m, 8F, \(\text{m-C}_6\text{F}_5\)).

\(\text{^31P}^{(\text{1H})}\) NMR (162 MHz, 298 K, CD\(_2\)Cl\(_2\)): \(\delta^{31\text{P}} 95.3\) (dm, \(\delta_{\text{PP}} = 977 \text{ Hz}\)).
Crystal suitable for X-ray crystal structure analysis were obtained by slow diffusion of pentane into a concentrate solution of compound 11 in CH₂Cl₂.
2.10 Synthesis of [o-Ph₂PMe(C₆H₄)BCy₂][B(C₆F₅)₄] (13) in two steps

![Molecular structure of Ph₂P⁺BCy₂][OTf]

![Molecular structure of Ph₂P⁺BCy₂][B(C₆F₅)₄]

Step 1: Methylation of o-Ph₂P(C₆H₄)BCy₂ (2) with MeOTf

A 20 ml vial was charged with Ph₂P(C₆H₄)BCy₂ (2) (87.7 mg, 0.2 mmol) dissolved in 3 ml pentane. To this was added a solution of MeOTf (49.2 mg, 0.3 mmol, 1.5 eq.) in 2 ml pentane. The colorless solution was then stirred for 14.5 h after which a white precipitate was formed. The supernatant removed by decantation and the colorless residue washed with pentane (3 x 2 ml) giving [o-Ph₂PMe(C₆H₄)BCy₂][OTf] (13a) (79.7 mg, 0.13 mmol) in 66% yield. The triflate salt was used without further purification for the next step.

1H NMR (600 MHz, 298 K, C₆D₅Br): 7.49 – 7.40 (m, 6H, C₆H, 2H), 7.40 – 7.35 (m, C₆H, 2H), 7.34 – 7.30 (m, 4H, C₆H), 7.28 (m, 1H, C₆H), 6.97 (m, 1H, C₆H), 2.59 (d, JPC = 12.9 Hz, 3H, CH₃), 1.57 (m, 8H, CH₂, BCy₂), 1.23 (m, 2H, CH, BCy₂) 1.08 – 0.71 (m, 12H, CH₂; BCy₂).

19F NMR (564 MHz, 298 K, C₆D₅Br): δ₁⁹F -77.8 (v1/2 ~ 2 Hz).

3¹P{¹H} NMR (243 MHz, 298 K, C₆D₅Br): δ³¹P 21.9 (v1/2 ~ 3 Hz).

1H NMR (600 MHz, 298 K, C₆D₅Br) spectrum of [o-Ph₂PMe(C₆H₄)BCy₂][OTf] (13a).
Step 2: Anion exchange with [Et₃Si][B(C₆F₅)₄]⋅2C₇H₈.

To [o-Ph₂PMe(C₆H₄)BCy₂][OTf] (13a) (60.2 mg, 0.1 mmol) in toluene (2 ml) was added freshly prepared [Et₃Si][B(C₆F₅)₄]⋅2C₇H₈ (92.9 mg, 0.095 mmol, 0.95 eq.) and the reaction was stirred for 1 h at room temperature. After this a colorless oil separated upon standing. The toluene phase was decanted and the oil washed with pentane (3 x 2 ml). Drying in vacuum yielded compound 13 as a colorless powder (66.0 mg, 0.058 mmol, 61%).

1H NMR (600 MHz, 298 K, CD₂Cl₂): δ 1H 7.87 (m, 2H, p-Ph); 7.81 (tdd, J = 7.5, 2.4, 1.2 Hz 1H, C₆H₄), 7.71 (m, 4H, m-Ph); 7.56 (m, 1H, C₆H₄), 7.51 (m, 4H, o-Ph); 7.49 (m, 1H, C₆H₄), 2.46 (d, 2JₚH = 12.7 Hz, 3H, CH₃), 1.75 - 1.34 (m, 10H, BCy₂), 1.16 - 0.91 (m, 12H, BCy₂). *tentatively assigned.*

13C{1H} NMR (126 MHz, 298 K, CD₂Cl₂): δ 13C 154.8 (p.r. quart., i-B-C₆H₄), 148.5 (dm, 1J_FC ~ 245 Hz, o-C₆F₅), 138.8 (d, 1J_FC ~ 245 Hz, p-C₆F₅), 136.9 (d, 1J_FC ~ 245 Hz, m-C₆F₅), 136.1 (d, 4J_PC = 3 Hz, p-Ph), 135.1 (d, J = 14 Hz, C₆H₄), 134.0 (d, J = 3 Hz, C₆H₄), 133.3 (d, 3J_PC = 11 Hz, m-Ph), 131.1 (d, 2J_PC = 13 Hz, o-Ph), 128.8 (d, J = 13 Hz, C₆H₄), 128.8 (d, J = 13 Hz, C₆H₄), 128.3 (d, J = 16 Hz, C₆H₄), 124.2 (br, i-C₆F₅), 120.6 (d, 1J_PC = 88 Hz, i-Ph), 117.0 (d, 1J_PC = 90 Hz, i-C₆F₅), 38.8 (br, BCH), 29.3 (br, BCy₂), 28.0 (br, BCy₂), 26.8 (s, BCy₂), 11.6 (d, 1J_PC = 58.8 Hz, CH₃) *tentatively assigned.*

11B NMR (192 MHz, 298 K, CD₂Cl₂): -16.9 [v_1/2 ~ 50 Hz, B(C₆F₅)₄]. BCy₂ was not observed.

19F NMR (564 MHz, 298 K, CD₂Cl₂): δ 19F -133.2 (m, 8F, o-C₆F₅), 163.8 (t, J = 20.4 Hz, 4F, p-F[B(C₆F₅)₄]), 167.7 (m, 8F, m-C₆F₅). Ca. 5% of remaining [OTf] anion (- 78.9 ppm) was observed.

31P NMR (243 MHz, 298 K, CD₂Cl₂): 21.4 (v_1/2 ~ 2 Hz).

MS (ESI) [M] C₃₁H₃₉BP⁺ calc. 453.2877 m/z. found 453.2889 m/z.
$^1\text{H NMR}$ (600 MHz, 298 K, CD$_2$Cl$_2$) spectrum of [o-Ph$_2$PMe(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] (13).

$^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, 298 K, CD$_2$Cl$_2$) spectrum of [o-Ph$_2$PMe(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] (13).

$^{11}\text{B}\{^1\text{H}\}$ NMR (192 MHz, 298 K, CD$_2$Cl$_2$), ^{19}F (564 MHz, 298 K, CD$_2$Cl$_2$) and $^{31}\text{P}\{^1\text{H}\}$ NMR (243 MHz, 298 K, CD$_2$Cl$_2$) spectra of [o-Ph$_2$PMe(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] (13).
2.11 Adduct Formation of compound 9 with 4-DMAP

A 5 ml vial was charged with \([o-\text{Ph}_2\text{PF}(\text{C}_8\text{H}_4)\text{BCy}_2][\text{B}(\text{C}_6\text{F}_5)_4](9\) (11.4 mg, 0.01 mmol) and 4-DMAP (1.2 mg, 0.01 mmol) and both reagents were dissolved with 0.25 ml CD$_2$Cl$_2$. The solution was transferred to a 3 mm tube and analyzed by NMR evidencing B-N adduct formation.

\[
\begin{align*}
\text{Ph}_2\text{P}^+\text{F}^{-} \quad &\text{1 eq. 4-DMAP} \quad \text{CD}_2\text{Cl}_2 \\
\text{[B}(\text{C}_6\text{F}_5)_4]^{-} \quad &\text{r.t.} \\
\text{9} \quad &\text{12}
\end{align*}
\]

Adduct formation with of compound 9 with 4-DMAP.

1H NMR (500 MHz, 298 K, CD$_2$Cl$_2$): 8.03 (m, 1H, C$_\text{Ar}$H, [Ph$_2$PF(C$_8$H$_4$)BCy$_2$]), 7.92 (m, 2H, C$_\text{Ar}$H, [Ph$_2$PF(C$_8$H$_4$)BCy$_2$]), 7.79 (m, 4H, C$_\text{Ar}$H, [Ph$_2$PF(C$_8$H$_4$)BCy$_2$]), 7.69 (m, 4H, C$_\text{Ar}$H, [Ph$_2$PF(C$_8$H$_4$)BCy$_2$]), 7.62 (bs, 2H, C$_\text{Ar}$H, 4-DMAP), 7.47 (m, 1H, C$_\text{Ar}$H, [Ph$_2$PF(C$_8$H$_4$)BCy$_2$]), 7.35 (m, 1H, C$_\text{Ar}$H, [Ph$_2$PF(C$_8$H$_4$)BCy$_2$]), 7.32 (m, 1H, C$_\text{Ar}$H, [Ph$_2$PF(C$_8$H$_4$)BCy$_2$]), 6.57 (bs, 1H, C$_\text{Ar}$H, 4-DMAP), 6.09 (bs, 2H, C$_\text{Ar}$H, 4-DMAP), 2.95 (s, 6H, CH$_3$ 4-DMAP), 1.71 (d, J = 12.9 Hz, 2H, BCy$_2$), 1.63 (m, 8H, BCy$_2$), 1.26 (m, 4H, BCy$_2$), 1.16 (m, 2H, BCy$_2$), 0.91 (m, 2H, BCy$_2$), 0.48 (m, 2H, BCy$_2$), 0.31 (m, 2H, BCy$_2$).

13B1H NMR (160 MHz, 298 K, CD$_2$Cl$_2$): 1.5 (BCy$_2$), -16.7 ([B(C$_6$F$_5$)$_4$]$^-$).

19F NMR (564 MHz, 298 K, CD$_2$Cl$_2$): -123.0 (d, J_{FP} = - 1025 Hz, 1F, [Ph$_2$PF(C$_8$H$_4$)BCy$_2$]), -132.9 (m, 8F, o-F [B(C$_6$F$_5$)$_4$]), -163.6 (t, J = 20.5 Hz, 4F, o-F [B(C$_6$F$_5$)$_4$]), -167.4 (m, 8F, m-F [B(C$_6$F$_5$)$_4$]).

31P1H NMR (202 MHz, CD$_2$Cl$_2$): 97.1 (d, J_{PF}: = 1025 Hz).
1H NMR (500 MHz, CD$_2$Cl$_2$) of free [o-Ph$_2$PF(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] (top) and 1:1 mixture of [o-Ph$_2$PF(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] and 4-DMAP (bottom). Some excess of 4-DMAP is observed.

11B NMR (160 MHz, CD$_2$Cl$_2$) of 1:1 mixture of [o-Ph$_2$PF(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] and 4-DMAP.
31P NMR (161 MHz, CD$_2$Cl$_2$) of free 9 (top) and 31P NMR (202 MHz, CD$_2$Cl$_2$) 1:1 of mixture of [o-Ph$_2$PF(C$_6$H$_4$)BCy$_2$]B(C$_6$F$_5$)$_4$] and 4-DMAP (bottom).
3 Variable temperature NMR studies

3.1 Temperature dependent 19F and 31P{1H} NMR spectra of compound 3.

For the NMR experiment, compound 3 (10 mg, 0.02 mmol) were dissolved in CD$_2$Cl$_2$ (ca. 0.5 ml) in a glove box, filled into a J-Young NMR tube and subjected to the NMR analysis.

19F NMR (564 MHz, CD$_2$Cl$_2$, left) and 31P{1H} NMR (243 MHz, CD$_2$Cl$_2$, right) spectra of the difluorophosphorane o-Ph$_2$PF$_2$(C$_6$H$_4$)BCy$_2$ (3) at variable temperatures.
3.2 Temperature dependent 19F and 31P{1H} NMR spectra of compound 8.

For the NMR experiment, compound 8 (10 mg, 0.02 mmol) were dissolved in CD$_2$Cl$_2$ (ca. 0.5 ml) in a glove box, filled into a J-Young NMR tube and subjected to the NMR analysis.

19F NMR (564 MHz, CD$_2$Cl$_2$, left) and 31P{1H} NMR (243 MHz, CD$_2$Cl$_2$, right) spectra of the difluorophosphorane o-Ph$_2$PF$_2$(C$_6$F$_4$)BCy$_2$ (8) at variable temperatures. * the investigated sample contained some residual starting material 7.

4 Catalytic Reactions

4.1 Dimerization of 1,1-Diphenylethylene

$\text{Ph} = \text{Ph}$

$2 \text{Ph} = \text{Ph} \xrightarrow{2 \text{mol\% cat}} \text{Ph}$

$\text{CD}_2\text{Cl}_2, 50 ^\circ\text{C}, 72 \text{h}$

9: 50 %
10: 0 %
13: 0 %
14: <1%
15: >95% (5 %12h)
16: >95% (92 %12h)

Reaction conditions: 0.1 mmol substrate, 0.7 ml solvent. Conversion determined by 1H NMR integration.

S-28
A 1-dram vial was charged with 0.002 mmol of the respective phosphonium borane (9-11, 13-16). To this was added 0.7 ml of a 0.14 M stock solution of 1,1-diphenylethylene in CD$_2$Cl$_2$. The resulting solution was transferred to a J-Young tube and heated for 72 h at 50 °C. The reaction was monitored by 1H NMR.

Stacked 1H NMR (600 MHz, 298 K, CD$_2$Cl$_2$) spectra of the reaction solutions from the catalytic dimerization of 1,1-diphenylethylene after 72 h at 50 °C employing [o-Ph$_2$PF(C$_6$F$_4$)BCy$_2$][B(C$_6$F$_5$)$_2$] (9), [o-Ph$_2$PF(C$_6$F$_4$)BMe$_2$][B(C$_6$F$_5$)$_2$] (10), [o-Ph$_2$PMe(C$_6$F$_4$)BCy$_2$][B(C$_6$F$_5$)$_2$] (13) and [Ph$_2$PF][B(C$_6$F$_5$)$_2$] (14) (top to bottom).

Stacked 1H NMR (600 MHz, 298 K, CD$_2$Cl$_2$) spectra of the reaction solutions from the catalytic dimerization of 1,1-diphenylethylene after 72 h at 50 °C employing [o-Ph$_2$PF(C$_6$F$_4$)BCy$_2$][B(C$_6$F$_5$)$_2$] (11), [Ph$_2$(C$_6$F$_5$)PF][B(C$_6$F$_5$)$_2$] (15) and [Ph(C$_6$F$_5$)$_2$PF][B(C$_6$F$_5$)$_2$] (16) as well as the spectrum of the control experiment with no added catalyst. (top to bottom).
A 1-dram vial was charged with 0.005 mmol of the respective phosphonium borane (9-11, 13-16). In a separate vial 1,1-diphenylethylene (18.1 mg, 0.1 mmol) and Et₃SiH (11.6 mg, 0.1 mmol) were dissolved in 0.5 ml C₆D₅Br. The resulting solution was transferred to the catalyst vial and then to a J-Young tube, which was heated for 48 h at 100 °C. The reaction was monitored by ¹H NMR.
Stacked 1H NMR (600 MHz, C$_6$D$_5$Br) spectra of the reaction solutions from the catalytic hydrosilylation of 1,1-diphenylethylene after 48 h at 100 °C employing [o-Ph$_2$PF(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] (9), [o-Ph$_2$PF(C$_6$H$_4$)BMes$_2$][B(C$_6$F$_5$)$_4$] (10), [o-Ph$_2$PMe(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] (13) and [Ph$_3$PF][B(C$_6$F$_5$)$_4$] (14) (top to bottom).

Stacked 1H NMR (600 MHz, C$_6$D$_5$Br) spectra of the reaction solutions from the catalytic hydrosilylation of 1,1-diphenylethylene after 48 h at 100 °C employing [o-Ph$_2$PF(C$_6$F$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$] (11), [Ph$_2$(C$_6$F$_5$)PF][B(C$_6$F$_5$)$_4$] (15) and [Ph(C$_6$F$_5$)$_2$PF][B(C$_6$F$_5$)$_4$] (16) as well as the spectrum of the control experiment with no added catalyst. (top to bottom).
Stacked 1H NMR (600 MHz, C$_6$D$_5$Br) spectra of the reaction solutions from the catalytic hydrosilylation of 1,1-diphenylethylene after 12 h at 100 °C employing \([\text{o-Ph}_2\text{PF}(\text{C}_6\text{F}_4)\text{BCy}_2]\)\([\text{B}(\text{C}_6\text{F}_5)_4]\) (11), \([\text{Ph}_2(\text{C}_6\text{F}_5)\text{PF}]\)[\text{B}(\text{C}_6\text{F}_5)_4] (15) and \([\text{Ph}(\text{C}_6\text{F}_5)_2\text{PF}]\)[\text{B}(\text{C}_6\text{F}_5)_4] (16). (top to bottom).

4.3 Deoxygenation of benzophenone with Et$_3$SiH

\[
\begin{align*}
\text{Ph}^+\text{O} & \xrightarrow{2 \text{ mol} \% \text{cat}} \text{Ph}\xrightarrow{2 \text{ eq.} \text{Et}_3\text{SiH}} \text{Ph}\xrightarrow{\text{CD}_2\text{Cl}_2, 50 ^\circ \text{C}, 48 \text{ h}} \text{Ph}\xrightarrow{(\text{Et}_3\text{Si})_2\text{O}} \\
\text{Ph} & \xrightarrow{\text{Ph}} \text{Ph}
\end{align*}
\]

9: 80%a
10: 0%
11: 93% (50%12h)
13: 0%b
14: 0%
15: 20% (8%12h)
16: >95% (>95%12h)

a 15% of Ph$_2$CHOSiEt_3 were observed. b 8% of Ph$_2$CHOSiEt_3 were observed.

A 1-dram vial was charged with 0.002 mmol of the respective phosphonium borane (9-11, 13-16). In a separate vial benzophenone (18.2 mg, 0.1 mmol) and Et$_3$SiH (23.2 mg, 0.2 mmol) were dissolved in 0.5 ml CD$_2$Cl$_2$. The resulting solution was transferred to the catalyst vial and then to a J-Young tube, which was heated for 48 h at 50 °C. The reaction was monitored by 1H NMR spectroscopy.
Stacked 1H NMR (600 MHz, CD$_2$Cl$_2$) spectra of the reaction solutions from the catalytic deoxygenation of benzophenone with triethylsilane after 48 h at 50 °C employing [o-Ph$_2$PF(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_3$](9), [o-Ph$_2$PF(C$_6$H$_4$)BMes$_2$][B(C$_6$F$_5$)$_3$](10), [o-Ph$_2$PMe(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_3$](13) and [Ph$_3$PF][B(C$_6$F$_5$)$_4$](14) (top to bottom).

Stacked 1H NMR (600 MHz, C$_6$D$_5$Br) spectra of the reaction solutions from the catalytic deoxygenation of benzophenone with triethylsilane after 48 h at 50 °C employing [o-Ph$_2$PF(C$_6$F$_4$)BCy$_2$][B(C$_6$F$_5$)$_3$](11), [Ph$_2$(C$_6$F$_5$)PF][B(C$_6$F$_5$)$_4$] (15) and [Ph(C$_6$F$_5$)$_2$PF][B(C$_6$F$_5$)$_4$] (16) as well as the spectrum of the control experiment with no added catalyst. (top to bottom).
Stacked 1H NMR (600 MHz, C$_6$D$_5$Br) spectra of the reaction solutions from the catalytic deoxygenation of benzophenone with triethylysilane after 12 h at 50 °C employing [o-Ph$_2$PF(C$_6$F$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$](11), [Ph$_2$(C$_6$F$_5$)PF][B(C$_6$F$_5$)$_4$] (15) and [Ph(C$_6$F$_5$)$_2$PF][B(C$_6$F$_5$)$_4$] (16). (top to bottom).

4.4 Hydrodefluorination of 1-fluoropentane with Et$_3$SiH

A 1-dram vial was charged with 0.005 mmol of the respective phosphonium borane (9-11, 13-16). In a separate vial 1-fluoropentane (9.0 mg, 0.1 mmol) and Et$_3$SiH (11.6 mg, 0.1 mmol) were dissolved in 0.5 ml C$_6$D$_5$Br. The resulting solution was transferred to the catalyst vial and then to a J-Young tube, which was heated for 48 h at 100 °C. The reaction was monitored by 19F NMR.
Stacked 19F NMR (564 MHz, 298 K, C$_6$D$_5$Br) spectra of the reaction solutions from the catalytic hydrodefluorination of 1-fluoropentane with triethylsilane after 48 h at 100 °C employing [o-Ph$_2$PF(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$](9), [o-Ph$_2$PF(C$_6$H$_4$)BMes$_2$][B(C$_6$F$_5$)$_4$](10), [o-Ph$_2$PMe(C$_6$H$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$](13) and [Ph$_2$PF][B(C$_6$F$_5$)$_4$](14) (top to bottom).

Stacked 19F NMR (564 MHz, 298 K, C$_6$D$_5$Br) spectra of the reaction solutions from the catalytic hydrodefluorination of 1-fluoropentane with triethylsilane after 48 h at 100 °C employing [o-Ph$_2$PF(C$_6$F$_4$)BCy$_2$][B(C$_6$F$_5$)$_4$](11), [Ph$_2$(C$_6$F$_5$)PF][B(C$_6$F$_5$)$_4$] (15) and [Ph(C$_6$F$_5$)$_2$PF][B(C$_6$F$_5$)$_4$] (16) as well as the spectrum of the control experiment with no added catalyst. (top to bottom).
Stacked 19F NMR (564 MHz, 298 K, C$_6$D$_5$Br) spectra of the reaction solutions from the catalytic hydrodefluorination of 1-fluoropentane with triethylsilane after 48 h at 100 °C employing [o-Ph$_2$PF(C$_6$F$_5$)$_2$BCy$_2$][B(C$_6$F$_5$)$_4$] (11), [Ph$_2$(C$_6$F$_5$)$_2$PF][B(C$_6$F$_5$)$_4$] (15) and [Ph(C$_6$F$_5$)$_2$PF][B(C$_6$F$_5$)$_4$] (16) (top to bottom).